
Tiger User Manual
TIGER@gematik.de

Version 3.7.7 - 2025-04-29

Contents
1. Overview . 1

1.1. Use cases . 2

1.2. Components . 2

2. Getting started. 6

2.1. Requirements. 6

2.2. Maven in a nutshell . 6

2.3. Maven plugin details . 11

2.4. Example project . 16

2.5. How to contact the Tiger team . 17

2.6. IntelliJ . 17

3. Tiger test environment manager . 19

3.1. Tiger.yaml files and how they are chosen and loaded . 19

3.2. Supported server nodes and their configuration . 20

3.3. Provided node templates . 33

3.4. Configuring the local test suite Tiger Proxy . 35

3.5. Standalone mode vs. implicit startup with test suite . 39

3.6. Using Environment variables and system properties . 40

4. Tiger Proxy. 42

4.1. Excurse: What are proxies, reverse, forward . 42

4.2. Tiger Proxy basics. 42

4.3. Understanding routes . 43

4.4. TLS, keys, certificates a quick tour on proxies . 47

4.5. Modifications . 51

4.6. Mesh set up . 52

4.7. Adding notes to messages. 54

4.8. Understanding RBelPath. 55

4.9. Running Tiger Proxy as standalone JAR . 62

4.10. Additional configuration . 63

4.11. Understanding filtering . 65

5. Tiger Test library . 67

5.1. Tiger test lib configuration. 67

5.2. Cucumber and Hooks . 68

5.3. Using the Cucumber Tiger validation steps . 69

5.4. Modifying RbelObjects (RbelBuilder). 71

5.5. Using the HTTP client steps . 73

5.6. Exemplaric scenario Konnektorfarm EAU validation . 80

5.7. Using Tiger test lib helper classes. 83

5.8. Synchronizing BDD scenarios with Polarion test cases (Gematik only) . 84

5.9. JUnit test report when using Scenario Outlines . 84

6. Tiger Configuration . 86

6.1. Inlets . 86

6.2. Key-translation . 87

6.3. Thread-based configuration. 87

6.4. Placeholders. 87

6.5. RbelPath-style retrieval. 88

6.6. Fallback values . 89

6.7. Localized configuration . 89

6.8. Examples. 90

6.9. Pre-Defined values . 91

6.10. Inline JEXL . 91

6.11. Configuration Editor . 92

7. Tiger User interfaces . 97

7.1. Workflow UI. 97

7.2. Postpone start of test scenarios. 109

7.3. Standalone Tiger Proxy Log. 109

7.4. Explanation of JEXL Expressions . 115

8. Tiger Zion . 119

8.1. Simple canned response . 119

8.2. Looping (tgrFor) . 120

8.3. Conditional rendering (tgrIf). 122

8.4. Backend request . 123

8.5. Nested response . 124

8.6. Matching path variables . 124

8.7. tgrEncodeAs. 126

8.8. RbelWriter content structures . 127

9. Tiger Extensions . 131

9.1. Tiger Konnektor Management Extension. 131

9.2. Tiger On FHIR Extension . 131

9.3. Tiger CATS Extension. 131

9.4. Tiger Cloud Extension . 131

9.5. Tiger PSSIM Extension . 131

9.6. Tiger Robot Extension . 131

10. Rest API . 133

10.2. Models. 136

11. Links to test relevant topics. 139

12. Frequently asked questions. 140

12.1. Maven . 140

12.2. Extensions . 141

12.3. Workflow UI . 141

12.4. Other topics . 142

12.5. Extensions . 144

12.6. Workflow UI . 145

12.7. Other topics . 146

Chapter 1. Overview
To get a quick introduction to the core concepts and features of the Tiger test framework check out
our video at
https://youtu.be/eJJZDeuFlyI?autoplay

Figure 1. Tiger product pitch video

Tiger is a framework for interface-driven BDD black-box-testing.

Tiger is a toolbox that supports and guides you when writing test suites. It lets you focus on writing
the tests and solves typical problems that every team encounters (configuration, setting up the test
environment, parametrization, result reporting, test running). How, you ask?

• Tiger does not focus on components but on the interactions between them. The Tiger Proxy
captures the traffic between components.

• Tiger Proxy parses the traffic and builds a tree-structure which abstracts away the encoding
(XML, JSON…) and lets you focus on the data.

• The Tiger test environment manager handles dockers, helm charts, JARs and external servers,
boots the configured setup and routes the traffic, all with zero lines of Java, all in YAML only.

• A complete configuration toolkit, which combines multiple source and supports custom
configuration of your testsuite as well, again with zero lines of Java.

• Common tasks (JSON-validation, message-filtering, scenario configuration, configuration of
simulators…) can be performed with the Tiger test library, which can be seamlessly imported
into BDD test suites.
This allows you to build mighty test suites with zero lines of java.

• If you want to write custom steps and glue code our Java-API has got you covered by supporting
common tasks (crypto, serialization…) for you. So the little lines you have to write are be
powerful and descriptive?!

1

https://youtu.be/eJJZDeuFlyI?autoplay
https://youtu.be/eJJZDeuFlyI?autoplay

1.1. Use cases
In our first dive we focused on what Tiger should stand for and how we could improve the situation
of test teams.

Core business use cases

• Fast and easy set up of test environments

• Uncomplicated automated execution of IOP tests

• Explicit analysis of test failures

• Reuse of cases/steps from existing test suites

• (non Java test automation support is not implemented yet)

Tiger use cases

Test envi ronment manager

Titus connect

Serenity integrat ion

Polarion integration

Use local docker containers

Use cloud based docker containers

Use test instances from TU/RU

Use self hosted services

Sync test cases to Titus

Sync test run results to Titus

Analyze test runs based on local reports with detailed testlogs

See requirements coverage in test repor t

Sync test cases to Polarion

Sync test run results to Polarion and Aurora

TigerUser

GematikTestTeam

ExternalPoductTeam

Reuse of cases/steps from existing test suites

Fast and easy set up of test environments

Uncomplicated automated execution of IOP tests

Explicit analysis of test failures

Support non Java Testautomation

Suppor t C# test automation

Support Rust test automation

Provide REST API for test automation

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 2. Tiger use cases

1.2. Components
Tiger has a clear separation in three components, each of them having a clear purpose, described in
the next subsections:

2

• Tiger Proxy

• Tiger Testenvironment Manager

• Tiger Test library

1.2.1. Tiger Proxy

The Tiger Proxy at its core is an extended Mock server, that has the following additional core
feature set:

• Rerouting - allows rerouting requests based on a configured lookup table

• Modifications - allows modifying the content of requests / responses on the fly

• Mesh set up - allows forwarding traffic data from one proxy to another for aggregated
validations

• TLS man in the middle - allows tracing TLS encrypted traffic

• RBel logging - breaks up and parses each request / response received. This includes decryption
of VAU and encrypted JWT.
Structured data like JSON, XML, JWT is displayed in a sophisticated HTML report.

1.2.2. Tiger test environment manager

The Tiger test environment manager provides methods to configure and instantiate multiple server
nodes in your test environment and offers the following core feature set:

• Instantiating test nodes - docker containers, docker compositions, helm charts, external Jars**
and
accessing server instances via external URL configurations

• Instantiating preconfigured server nodes - for common test scenarios like ePA, ERp, IDP,
Demis

• Automatic shutdown - on tear down of test run, all the instantiated test nodes are ended

• Highly configurable - Multitude of parameters and configuration properties

• Flexible environment management - exporting and importing environment variables and
system properties to other test nodes

• Customizing configuration properties - via command line system properties or environment
variables

1.2.3. Tiger test library

The Tiger test library provides the following core features:

• Validation - BDD steps to filter requests and validate responses

• Workflow UI - BDD steps to support tester guidance in test workflows

• Content assertion - BDD steps to assert JSON / XML data structures

• Product Integration - Synchronisation with Polarion, Serenity BDD and screenplay pattern

3

1.2.4. Working together

The Testenvironment Manager instantiates all test nodes configured in the tiger.yaml config file.
It also instantiates one local Tiger Proxy for the current test suite.
This Tiger Proxy instance (and others created in the test environment if using a mesh setup) traces
all requests and responses
forwarded via this proxy and provides them to the test suite for further validation.

For each server node instantiated, the local Tiger Proxy adds a route so that the instantiated server
node
can be reached by the test suite via HTTP and the configured server hostname.

Each Tiger Proxy can be configured in a multitude of ways: as reverse or forward proxy with
special routing features and
modifications of content easily configurable, or in a mesh setup as proxy forwarding traffic to other
Tiger Proxies…

The BDD or JUnit test suite can integrate the Tiger test library to validate messages (requests and
responses) sent/received
over Tiger Proxies using features such as RBelPath, VAU decryption, JSON checker and XML
checker.

Tiger components

Test environment

Current test project

Simulators
RU/TU service

instances

locally star ted
docker containers

helm charts on
local/remote kubernetes

TigerTestEnvMgr

TigerProxy

TigerTestLib

Validation & Workflow steps
TestContext steps

TigerGlobalConfiguration
JsonChecker

PolarionToolbox
SerenityIntegration ...

Tiger Extenions

Cloud, CATS
Konnektormanagement

PSSim, HTTP Client
FHIR validation

Zi0n mock server
KartenTerminal Robot

Local Http trafficProxyConfiguration IRBelMessaging

Current test suite
via TigerCucumberRunner

Routed HTTP traffic

test traffic

return traffic
messages

from test traffic

routed test traffic

configure URLs,
URL mappings and certs

build me
a test env

creates helm chart instances
on local or remote cluster

creates containers

star ts simulators from e.g. jar fi les

use extensions for standard functionality

use generic helpers

Figure 3. Tiger components

1.2.5. Tiger extensions

As Tiger evolves we have implemented quite a nice set of extensions that eases your job as tester in
areas not directly fitting the core of Tiger. The currently or soon available extensions are:

• Cloud extension provides the docker, docker compose and helm chart server types for the Tiger
test environment mgr

• CATS extension provides BDD steps to configure and interact with the Cats Card Terminal
simulator of gematik

4

• Konnektormanagement extension provides BDD steps to administer Konnektors

• PSSim extension provides BDD steps to simulate a Primärsystem

• HTTP Client extension follows the zero code philosophy and provides BDD steps to perform
http requests without having to write any line of code

• FHIR validation extension provides BDD steps to perform FHIR scheme based / FHIRPath based
validations (planned release early spring 2023)

• Kartenterminal Robot extension provides BDD steps to control the card terminal robot
currently constructed at gematik labs (release mid 2023)

5

Chapter 2. Getting started
Tiger is based on Java, Maven and Serenity BDD - so saddle the horses, check the operating system
requirements and hit the road.

We do not at the moment have any plans to support gradle or other build
environments.
But if you are using it in your projects feel free to contact us, and we might find a
way to support your specific build environment.

If you don’t have time right now to look through the whole documentation, you can directly jump
to our Example project section.

2.1. Requirements
System requirements

• Open JDK >= 17

• Maven >= 3.6

When you are developing a testsuite (further), you should use an IDE (we recommend IntelliJ >=
2021.2.3 because of the IntelliJ Cucumber plugin).

 On Windows you can use Git Bash or Powershell

2.2. Maven in a nutshell
In order to use Tiger with your BDD/Cucumber/Serenity based test suite you need to add a few
dependencies to integrate with Tiger

• Current version of Tiger-bom in your dependencyManagement section

• Tiger test library in your dependencies section

• or the current version of Tiger test library as test-jar artefact

The second dependency is needed so that the IntelliJ Cucumber plugin detects the
Steps/Glue code provided by the Tiger test library.

And to trigger the test suite’s execution, you will need to add these plugins

• Tiger maven plugin

• Maven FailSafe plugin

Listing 1. Simple Tiger Maven pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<!--
 ~ Copyright 2024 gematik GmbH

6

 ~
 ~ Licensed under the Apache License, Version 2.0 (the "License");
 ~ you may not use this file except in compliance with the License.
 ~ You may obtain a copy of the License at
 ~
 ~ http://www.apache.org/licenses/LICENSE-2.0
 ~
 ~ Unless required by applicable law or agreed to in writing, software
 ~ distributed under the License is distributed on an "AS IS" BASIS,
 ~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 ~ See the License for the specific language governing permissions and
 ~ limitations under the License.
 ~
 -->

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>de.gematik.test.tiger.examples</groupId>
 <artifactId>TigerTestBDD</artifactId>
 <version>1.2.0-SNAPSHOT</version>

 <properties>
 <maven.compiler.source>17</maven.compiler.source>
 <maven.compiler.target>17</maven.compiler.target>

 <version.maven.failsafe>3.3.1</version.maven.failsafe>
 <!-- please adapt Tiger version property to the most current one obtained from
-->
 <!-- maven central:
 https://mvnrepository.com/artifact/de.gematik.test/tiger-test-lib
 or from gematik internal Nexus
 https://nexus.prod.ccs.gematik.solutions/#browse/search=keyword%3Dtiger-
test-lib
 -->
 <version.tiger>3.7.2</version.tiger>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>de.gematik.test</groupId>
 <artifactId>tiger-bom</artifactId>
 <version>${version.tiger}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>

7

 </dependencyManagement>

 <!-- tag::dependencies[] -->
 <dependencies>
 <dependency>
 <groupId>de.gematik.test</groupId>
 <artifactId>tiger-test-lib</artifactId>
 </dependency>
 <dependency>
 <groupId>io.cucumber</groupId>
 <artifactId>cucumber-junit-platform-engine</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <!-- end::dependencies[] -->

 <build>
 <plugins>
 <!-- tag::generator-plugin[] -->
 <!-- optional plugin to dynamically create JUnit driver classes on the
fly.
 You may omit this plugin if you have written your driver classes manually.
 -->
 <plugin>
 <groupId>com.mycila</groupId>
 <artifactId>license-maven-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
 </plugin>
 <plugin>
 <groupId>de.gematik.test</groupId>
 <artifactId>tiger-maven-plugin</artifactId>
 <version>${version.tiger}</version>
 <executions>
 <execution>
 <configuration>
 <!-- optional -->
 <glues>
 <glue>de.gematik.test.tiger.glue</glue>
 <!-- add your packages here -->
 </glues>
 <!-- optional -->

<featuresDir>${project.basedir}/src/test/resources/features</featuresDir>
 <!-- optional -->
 <includes>
 <include>**/*.feature</include>
 </includes>
 <!-- optional -->
 <driverPackage>

8

 de.gematik.test.tiger.examples.bdd.drivers
 </driverPackage>
 <!-- optional -->
 <!--suppress UnresolvedMavenProperty -->
 <driverClassName>Driver${ctr}IT</driverClassName>
 <!-- optional, defaults to the templated located at
 /src/main/resources/driver4ClassTemplate.jtmpl
 in the tiger-maven-plugin module.
 This template will create a junit4 compliant driver class.
 Use separate template file if you have spring boot apps to
test
 or need to do some more fancy set up stuff.

<templateFile>${project.basedir}/..../XXXX.jtmpl</templateFile>
 -->
 <!-- optional -->
 <skip>false</skip>
 </configuration>
 <phase>generate-test-sources</phase>
 <id>generate-tiger-drivers</id>
 <goals>
 <!-- mandatory -->
 <goal>generate-drivers</goal>
 <!-- optional. This will attach the Tiger-Agent to the VM
running the
 tests. This, in turn, enables tiger to access and store
masterSecrets of TLS
 connections. This can be used to decipher TLS-traffic in
wireshark. -->
 <goal>attach-tiger-agent</goal>
 </goals>
 </execution>
 <execution>
 <id>generate-tiger-report</id>
 <goals>
 <goal>
 generate-serenity-reports
 </goal>
 </goals>
 <configuration>
 <!-- optional - directory where serenity reports are
created -->
 <reportDirectory>
${project.build.directory}/site/serenity</reportDirectory>
 <!-- optional - directory with the .feature files being
executed -->
 <requirementsBaseDir>
src/test/resources/features</requirementsBaseDir>
 <!--optional - when set to true, the serenity report is
automatically open in the default browser -->
 <openSerenityReportInBrowser>

9

false</openSerenityReportInBrowser>
 <!-- optional - A comma separated list of report types to
be generated. -->
 <reports>html,single-page-html,json-summary</reports>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <!-- end::generator-plugin[] -->

 <!-- tag::failsafe-plugin[] -->
 <!-- Runs the tests by calling the JUnit driver classes -->
 <!-- To filter features / scenarios use the system property
 -Dcucumber.filter.tags -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>${version.maven.failsafe}</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <includes>
 <!-- adapt to the class names of your driver classes -->
 <include>**/Driver*IT.java</include>
 </includes>
 </configuration>
 </plugin>
 <!-- end::failsafe-plugin[] -->
 </plugins>
 </build>
</project>

For a successful startup you also need a minimum Tiger test environment configuration yaml file in
your project root:

Listing 2. Minimum Test environment configuration

minimum viable test environment specification
default local Tiger Proxy
tigerProxy:
no server nodes
servers: {}

and finally a minimal feature file under src/test/resources/features:

10

Listing 3. Minimum Cucumber feature file

Feature: Test Tiger BDD

 Scenario: Dummy Test
 Given TGR set global variable "key01" to "value01"
 When TGR assert variable "key01" matches "v.*\d\d"

With these three files in place you can run the simple dummy test scenario defined in the feature
file by issuing

mvn verify

2.3. Maven plugin details
This section is for the ones that love to know all the details.
If you are happy that everything works and don’t bother to understand all the bits / properties and
settings just skip this section and head over to the Example project section.

2.3.1. Tiger maven plugin

This plugin allows to dynamically generate the JUnit driver classes that are then used in the
Surefire plugin to start the test runs.
And replaces the serenity maven plugin to generate Serenity BDD test reports.

Generate Drivers goal

You may decide to manually write your own JUnit driver classes in which case you
can omit this plugin.

To activate this feature in your maven project add the following plugin block to your
<build><plugins> section:

 <!-- optional plugin to dynamically create JUnit driver classes on the
fly.
 You may omit this plugin if you have written your driver classes manually.
 -->
 <plugin>
 <groupId>com.mycila</groupId>
 <artifactId>license-maven-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
 </plugin>
 <plugin>
 <groupId>de.gematik.test</groupId>
 <artifactId>tiger-maven-plugin</artifactId>

11

 <version>${version.tiger}</version>
 <executions>
 <execution>
 <configuration>
 <!-- optional -->
 <glues>
 <glue>de.gematik.test.tiger.glue</glue>
 <!-- add your packages here -->
 </glues>
 <!-- optional -->

<featuresDir>${project.basedir}/src/test/resources/features</featuresDir>
 <!-- optional -->
 <includes>
 <include>**/*.feature</include>
 </includes>
 <!-- optional -->
 <driverPackage>
 de.gematik.test.tiger.examples.bdd.drivers
 </driverPackage>
 <!-- optional -->
 <!--suppress UnresolvedMavenProperty -->
 <driverClassName>Driver${ctr}IT</driverClassName>
 <!-- optional, defaults to the templated located at
 /src/main/resources/driver4ClassTemplate.jtmpl
 in the tiger-maven-plugin module.
 This template will create a junit4 compliant driver class.
 Use separate template file if you have spring boot apps to
test
 or need to do some more fancy set up stuff.

<templateFile>${project.basedir}/..../XXXX.jtmpl</templateFile>
 -->
 <!-- optional -->
 <skip>false</skip>
 </configuration>
 <phase>generate-test-sources</phase>
 <id>generate-tiger-drivers</id>
 <goals>
 <!-- mandatory -->
 <goal>generate-drivers</goal>
 <!-- optional. This will attach the Tiger-Agent to the VM
running the
 tests. This, in turn, enables tiger to access and store
masterSecrets of TLS
 connections. This can be used to decipher TLS-traffic in
wireshark. -->
 <goal>attach-tiger-agent</goal>
 </goals>
 </execution>
 <execution>

12

 <id>generate-tiger-report</id>
 <goals>
 <goal>
 generate-serenity-reports
 </goal>
 </goals>
 <configuration>
 <!-- optional - directory where serenity reports are
created -->
 <reportDirectory>
${project.build.directory}/site/serenity</reportDirectory>
 <!-- optional - directory with the .feature files being
executed -->
 <requirementsBaseDir>
src/test/resources/features</requirementsBaseDir>
 <!--optional - when set to true, the serenity report is
automatically open in the default browser -->
 <openSerenityReportInBrowser>
false</openSerenityReportInBrowser>
 <!-- optional - A comma separated list of report types to
be generated. -->
 <reports>html,single-page-html,json-summary</reports>
 </configuration>
 </execution>
 </executions>
 </plugin>

Mandatory configuration properties

• List[glue] glues (mandatory)
list of packages to be included as glue or hooks code

Optional configuration properties or properties with default values

• List[include] includes (mandatory)
list of include patterns for feature files in Ant format (directory/**.feature)

• String featuresDir (default: local working directory)
root folder from where to apply includes and excludes

• List[exclude] excludes (default: empty)
list of exclusion patterns for feature files in Ant format (directory/**.feature)

• boolean skip (default: false)
flag whether to skip the execution of this plugin

• String driverPackage (default: de.gematik.test.tiger.serenity.drivers)
package of the to be generated driver class

• String driverClassName (default: Driver${ctr})
Name of the to be generated driver class.

The ctr token ${ctr} is mandatory!

13

For more details see section below

• String templateFile (default: null which means that the plugin will use the built-in template file)
Optional path to a custom template file to be used for generating the driver Java source code
file.

◦ The plugin currently supports the following list of tokens:

▪ ${ctr}
counter value that is unique and incremented for each feature file.

▪ ${package}
will be replaced with package declaration code line of the driver class.
Either empty or of the pattern "package xxx.yyy.zzz;" where xxx.yyy.zzz is replaced with
the configured driverPackage configuration property.

▪ ${driverClassName}
name of the driver class (with the ctr token already being replaced with the
incrementing counter value).

▪ ${feature}
path to the feature file(s).

▪ ${gluesCsv}
comma separated list of glue/hook packages without curly braces.

Manually creating driver classes

For each feature (or use wildcards / directories for single driver class) you can implement a driver
class based on the example code below.

package de.gematik.test.tiger.integration.YOURPROJECT;

import static io.cucumber.junit.platform.engine.Constants.FILTER_TAGS_PROPERTY_NAME;
import static io.cucumber.junit.platform.engine.Constants.GLUE_PROPERTY_NAME;
import static io.cucumber.junit.platform.engine.Constants.PLUGIN_PROPERTY_NAME;

import org.junit.platform.suite.api.ConfigurationParameter;
import org.junit.platform.suite.api.IncludeEngines;
import org.junit.platform.suite.api.SelectClasspathResource;
import org.junit.platform.suite.api.Suite;

@Suite
@IncludeEngines("cucumber")
@SelectClasspathResource("features/YOURFEATURE.feature")
@ConfigurationParameter(key = FILTER_TAGS_PROPERTY_NAME, value = "not @Ignore")
@ConfigurationParameter(key = GLUE_PROPERTY_NAME, value =
"de.gematik.test.tiger.glue,ANY ADDITIONAL PACKAGES containing GLUE or HOOKS code")
@ConfigurationParameter(
 key = PLUGIN_PROPERTY_NAME,
 value = "io.cucumber.core.plugin.TigerSerenityReporterPlugin,json:target/cucumber-
parallel/1.json")

14

public class Driver1IT {}

Generate Reports goal

The second execution block in the example XML section above will trigger the report creation.
With the parameter reports you can configure which reports get generated.
The following reports types are available

• html - A fancy detailed overall report (index.html)

• single-page-html - A simple HTML single page report for emailing (serenity-summary.html)

• json-summary - A summary report in json format, useful for displaying in CI tools (e.g.: Jenkins)

By setting the parameter openSerenityReportInBrowser to true, the html report will automatically
open in the default browser.

Start Tiger test environment in standalone mode

Adding the plugin as shown below will allow you to start a test environment in standalone mode by
starting mvn as follows: mvn tiger:setup-testenv.
Please be aware that this is a blocking call, you may specify a timeout configuration property
autoShutdownAfterSeconds with timeout in seconds.
To prematurely stop the process either press Ctrl+C in your console or kill it with operating system
specific kill commands / tools.
In order to customize the tiger yaml to be used either set the environment variable
TIGER_TESTENV_CFGFILE or set the system property tiger.testenv.cfgfile.

<plugin>
 <groupId>de.gematik.test</groupId>
 <artifactId>tiger-maven-plugin</artifactId>
 <version>${version.tiger}</version>
 </plugin>

2.3.2. FailSafe plugin

The failsafe plugin will trigger the test run.
It is important to activate the testFailureIgnore property, to ensure that even if the test fails, the
serenity report is created.

To filter the scenarios/features to be run you may pass in the Java system property
cucumber.filter.tags.
You can do so either within the <systemPropertyVariables> tag or via the command line using
-Dcucumber.filter.tags

The "not @Ignore" is the default setting for maven verify as well as for IntelliJ, therefore scenarios
that should be ignored are to be tagged with @Ignore.
If the user uses the cucumber option "-Dcucumber.options" to set own tags then the default setting
of "not @Ignore" is overridden.

15

The same counts for own tag settings in the IntelliJ run configuration.

For more details about how to use filter tags see https://cucumber.io/docs/cucumber/api/#tags

 <!-- Runs the tests by calling the JUnit driver classes -->
 <!-- To filter features / scenarios use the system property
 -Dcucumber.filter.tags -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>${version.maven.failsafe}</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <includes>
 <!-- adapt to the class names of your driver classes -->
 <include>**/Driver*IT.java</include>
 </includes>
 </configuration>
 </plugin>

 We do not recommend the parallel test execution with Tiger at the moment.

Reason is that when using Tiger Proxies with the Tiger test library validation feature parallel
execution may lead to messages from different threads / forked processes ending up in the wrong
listening queue making it very complicated to make sure your validations are working as expected
in different timing situations.

2.4. Example project
In the /doc/examples/tigerOnly folder of this project you will find an example for a minimum
configured maven project that

• embeds Tiger

• allows to use its Cucumber steps and

• allows to easily configure your test environment

All you need is to set up three files:

• a Maven pom.xml file to declare the dependencies and the plugins needed

• a tiger.yaml to declare your test environment (servers needed, proxy routes,…).

16

https://cucumber.io/docs/cucumber/api/#tags

This is currently "empty".

• a test.feature file containing a test scenario and dummy test steps to be performed.

Figure 4. File structure of TigerOnly example project

2.5. How to contact the Tiger team
You can reach us via

• GitHub https://github.com/gematik/app-Tiger

• or email TIGER@gematik.de

2.6. IntelliJ
We recommend to use latest version of IntelliJ at least version 2021.1.

2.6.1. Run/Debug settings

To be able to successfully start scenarios/features you first need to configure the Run/Debug settings
of your project:

Run/Debug settings for Java Cucumber template

• Main class: io.cucumber.junit.TigerCucumberRunner

• Glue:

◦ de.gematik.test.tiger.glue

◦ net.serenitybdd.cucumber.actors

17

https://github.com/gematik/app-Tiger
mailto:TIGER@gematik.de

if you are using the screenplay pattern (PREFERRED!)

◦ additional packages specific to your test suite

• VM Options:

◦ Java proxy system properties (see Proxy configuration below)

• Environment variables:

◦ Proxy environment variables (see Proxy configuration below)

Best is to add these settings to the Configuration Templates for Cucumber Java.
Depending on the version of IntelliJ these settings are located either on the top icon bar or at the
bottom left as link.

Else you would have to apply these settings to any new Debug/Run Configuration, like when you
start a new scenario, which was never executed before.

Figure 5. Run/Debug settings for IntelliJ

2.6.2. Proxy configuration

If you are located behind a proxy please make sure to set the environment variables HTTPS_PROXY
and HTTP_PROXY as well as the Java system properties http.proxyHost, http.proxyPort,
https.proxyHost and https.proxyPort appropriately so that the internet connections are routed
properly through your company proxy.

Please also make sure IntelliJ has its proxy settings configured appropriately for HTTP and HTTPS
so that it can download the dependencies for the IntelliJ build environment too.

BOTH settings (environment variables and system properties) are required as
Maven and Java code and HTTP client libraries use both settings.

18

Chapter 3. Tiger test environment manager
As outlined in the overview section the test environment manager is one of the three core
components of the Tiger test framework.
Its main task is to start various test server nodes configured in the tiger.yaml configuration file and
initialize the local Tiger Proxy for the test suite.

3.1. Tiger.yaml files and how they are chosen and
loaded
The test environment manager first checks if the env variable is set and tries to load the
configuration file from this value.
If this file does not exist the test environment manager tries to load the configuration from
tiger.yaml.
If none of these files exist it will fail the start-up.
To choose a different test environment configuration file you may set the environment variable
TIGER_TESTENV_CFGFILE.

If the environment variable is not set it searches for files named tiger.yaml or tiger.yml.
If none of these files exist it will fail the start-up.

It then loads further yaml-files:

• tiger-${hostname}.yaml and tiger-${hostname}.yml are read and give the possibility to make
computer-dependent configuration.
The hostname is the name of your own computer in the network (on Windows-machines
typically the computername).

• The list given under tiger.additionalYamls is read.
Each list-entry has two properties:

◦ filename pointing to the file to be read.
This can be relative to the tiger.yaml (primary) or relative to the working-directory
(secondary).
Keep in mind that placeholders can be used in the filename!

◦ baseKey, an optional attribute, which gives you the chance to prefix every property from the
given file with this key (keep in mind that the tiger.yaml has a baseKey of tiger)

In the start-up phase it also informs the local Tiger Proxy about the hostnames each node has
configured, so that the local Tiger Proxy can create appropriate routing entries in its own
configuration.

To configure your test environment you can compose the tiger.yaml file manually.

The nodes configured in the yaml file will be started asynchronously unless the dependsUpon
property is set.

19

3.2. Supported server nodes and their configuration
The Tiger testenvironment manager currently supports the following list of server nodes.

• Docker container is a node based on instantiating a specific docker image that is either locally
available or downloaded from a remote docker repo configured in the source property.

• Docker compose is a node that you can use to start a group of services defined in one to several
compose yaml files configured in the source list.

• Helm charts is a node that installs/updates a given helm chart on a local or remote kubernetes
cluster (configuring a local context for remote clusters has to be done outside of Tiger)

• External jar is a node that is started by running java -jar XXXX.jar after downloading a Jar
archive from the configured source URL.

• External URL is a symbolic node that is actually maintained outside the realm of the test
environment manager.
The main purpose is to allow the test suite to access this external server via a constant URL,
regardless of what the actual access URL of the server is.
So if you change the location of the external server has no adaptations effect on the test suite.

• Tiger Proxy is a specialized external Jar node that allows you to instantiate standalone Tiger
Proxy nodes in your test environment in several locations to track, log and validate traffic
between any two nodes.
For this to work, you must either be able to force a proxy on the nodes or use a reverse proxy
set up scenario.

• Helm Chart is a node that will be added to tiger via a plugin mechanism that starts a helm chart
within a kubernetes environment.

• httpbin is a node mainly useful for testing purposes.
It starts a httpbin server which provides mock endpoints.

3.2.1. YAML configuration files in a nutshell

Before you start writing your own tiger.yaml configuration files, make sure you have worked with
yaml files before and know its syntax and structure.
If unsure take a 20 minutes primer, although not everything in the video is relevant, it gives a good
introduction to indenting properties and structures and specifying values in a yaml file.

3.2.2. General properties

The general properties apply to each node type.

Listing 4. General properties

serverKey_xxx:
 # OPTIONAL hostname of this node when accessing it via the test suite
 # (rerouted via the local test suite Tiger Proxy).
 # Defaults to the server name (serverKey_xxx)
 # For docker compose and helm chart this property must NOT be set!
 hostname: string

20

https://github.com/gaul/java-httpbin
https://dev.to/techworld_with_nana/yaml-tutorial-for-beginners-a06

 # MANDATORY one of [tigerProxy|docker|compose|externalJar|externalUrl]
 type: string
 # OPTIONAL name of a template to apply.
 # Default value is empty
 template: string
 # OPTIONAL comma separated list of keys of server nodes that must be started
 # before this node is set up.
 # Default value is empty
 dependsUpon: csv string
 # OPTIONAL duration in seconds to wait for a successful start-up of the server node
 # Default value is 20
 startupTimeoutSec: int
 # OPTIONAL duration in milliseconds to wait between polls for the server node to
start up
 # Default value is the property
"tiger.internal.externalServer.startupPollIntervalMs" which defaults to 1000
 startupPollIntervalMs: int
 # MANDATORY type specific property in that for some types it's a list,
 # for some others it's a single URL
 source:
 - source entry 1
 - source entry 2
 # used by all node types, for external URL this property is OPTIONAl and fallback is
the source URL
 healthcheckUrl: string
 # OPTIONAL only declare the server healthy once the specified return code
 # is given
 healthcheckReturnCode: int
 # type specific property for Tiger Proxy and docker container nodes
 version: string
 # OPTIONAL the logs of the server are also written to a file, if no logFile is
 # specified a default name will be used (default is "./target/serverLogs/[key of
server in tiger.yaml].log")
 logFile: ./target/serverLogs/serverKey_xxx.log

 # OPTIONAL type specific list of environmental variable assignments to be used
 # when starting the server node.
 # Each entry has to have the format ENV_VAR_NAME=VALUE
 # Has NO EFFECT on external Url nodes.
 # Default value is empty array
 environment:
 - ENV_VAR1=VALUE1
 - ENV_VAR2=VALUE2
 - http://tsl --> https://download-ref.tsl.ti-dienste.de
 # OPTIONAL list of routes to be added to the local Tiger Proxy of the test suite.
 # Default value is empty array
 urlMappings:
 - https://www.orf.at --> https://eitzen.at
 # OPTIONAL list of system properties that will be provided to following nodes.
 # Each entry has to have the format system.property.name=VALUE
 # Default value is empty array

21

 exports:
 - systemProp1=Value1
 - systemProp2=Value2

Here is a little example how the server names are set and used and how there server is reachable
via the Tiger Proxy.

Listing 5. Example with three external jar servers

servers:
 # here the server name is "identityServer" and
 # the server is reachable under "identityServer" via the Tiger Proxy
 identityServer:
 type: externalJar
 source:
 - local:../octopus-identity-service/target/octopus-identity-service-1.0-
SNAPSHOT.jar
 healthcheckUrl: http://localhost:${tiger.ports.identity}/status
 externalJarOptions:
 options:
 - -Dhttp.proxyHost=127.0.0.1
 - -Dhttp.proxyPort=${tiger.ports.proxyPort}
 arguments:
 - --server.port=${tiger.ports.identity}
 - --services.shopping=http://myShoppingServer

 # here the server name is "shoppingServer"
 # but the server is reachable under "myShoppingServer" via the Tiger Proxy because
hostname is set
 shoppingServer:
 hostname: myShoppingServer
 type: externalJar
 source:
 - local:../octopus-shopping-service/target/octopus-shopping-service-1.0-
SNAPSHOT.jar
 healthcheckUrl: http://localhost:${tiger.ports.shopping}/inventory/status
 externalJarOptions:
 options:
 - -Dhttp.proxyHost=127.0.0.1
 - -Dhttp.proxyPort=${tiger.ports.proxyPort}
 arguments:
 - --server.port = ${tiger.ports.shopping}
 - --services.identity=http://identityServer

 testClient:
 type: externalJar
 source:
 - local:../octopus-example-client/target/octopus-example-client-1.0-SNAPSHOT.jar
 healthcheckUrl: http://localhost:${tiger.ports.client}/testdriver/status
 externalJarOptions:

22

 options:
 - -Dhttp.proxyHost=127.0.0.1
 - -Dhttp.proxyPort=${tiger.ports.proxyPort}
 arguments:
 - --server.port=${tiger.ports.client}
 # here are the examples how the servers are reachable
 - --services.shopping=http://myShoppingServer
 - --services.identity=http://identityServer

The general properties are followed by the type specific substructures, which configure specific
aspects of each node type.
Their meaning and format are explained in the related section.

Listing 6. Type specific properties

 # type specific sub structure for external jar, Tiger Proxy, docker and helm chart
nodes
 externalJarOptions:
 # used by external jar and Tiger Proxy nodes
 workingDir: string
 # only used by external jar nodes
 options: []
 # used by external jar and Tiger Proxy nodes
 arguments: []
 # flag whether to forward log output from external jar processes to the workflow
UI
 activateWorkflowLogs : true
 # flag whether to forward log output from external jar processes to workflow UI
and console
 activateLogs: true

 # type specific sub structure for Tiger Proxy nodes
 tigerProxyConfiguration:
 # Here a normal Tiger Proxy configuration can be used.
 # This is explained in more depth down below
 adminPort: int
 proxiedServer: string
 proxiedServerProtocol: [HTTP|HTTPS]
 proxyRoutes:
 # defines a forward-proxy-route from this server
 - from: http://foobar
 # to this server
 to: https://cryptic.backend/server/with/path

 # type specific sub structure for docker container and compose nodes
 dockerOptions:
 # all properties below only used by docker container nodes
 proxied: boolean
 oneShot: boolean
 entryPoint: string

23

 # type specific sub structure for helm charts
 helmChartOptions:
 # context to install the helm chart to
 context:
 # name for the helm chart
 podName:
 # working directory for local helm and kubectl calls
 workingDir:
 # name space to install the helm chart to
 nameSpace:
 # flag whether to show more detailed infos about
 # the helm chart installation in the console
 debug:
 # list of regex names for pods to be running to signal
 # successful startup of helm chart **/
 healthcheckPods:
 # list of key value pairs to be used by the helm chart
 values:
 # comma separated list of port forwardings
 # Entries can be either "podNameRegex:xxxx", which is shorthand for
 # "podNameRegex:xxxx:xxxx or
 # "podNameRegex:xxxx:yyyy" where xxxx is the local port
 # and yyyy is the port in the pod
 exposedPorts:
 # list of regex for pod names logs should be shown
 logPods:

The configuration of the Tiger Proxy is explained in detail in the section Configuring the local test
suite Tiger Proxy

3.2.3. Configuring PKI identities in Tiger Proxy’s tls section

PKI identities can be supplied in a number of ways (JKS, BKS, PKCS1, PKCS8).
In every place a string can be given.
It could be one of

• "my/file/name.p12;p12password"

• "p12password;my/file/name.p12"

• "cert.pem;key.pkcs8"

• "rsaCert.pem;rsaKey.pkcs1"

• "key/store.jks;key"

• "key/store.jks;key1;key2"

• "key/store.jks;jks;key"

Not supported pathname strings:

• "D:\\myproject\\key\\store.jks;key"

24

Supported pathname string on all platforms:

• "myproject/key/store.jks;key"

Please notice, that double backslashes ("\\") are not supported as file separators, since they are not
accepted on all platforms.
Invalid pathname strings will also produce an exception.

Each part can be one of:

• filename

• password

• store-type (accepted are P12, PKCS12, JKS, BKS, PKCS1 and PKCS8)

If you want, you can also describe the components in a map:

tls.forwardMutualTlsIdentity:
 filename: myIdentity.p12
 password: "changeit"
 storeType: P12

In this case both the storeType and the password are not mandatory and would be guessed (the
store-type via the file extension and the password via a default-list).

PKI identity passwords

Tiger will attempt to decrypt a given P12 file with a list of common passwords, among these are:

"00", "123456", "gematik", "changeit"

Users can insert additional passwords by configuring the tiger.yaml as follows

lib:
 additionalKeyStorePasswords: ["foo", "bar", "baz"]

3.2.4. Docker Container node

The docker container node allows to instantiate a local docker container from the configured
image.
The exposed port of the docker container is available as a special token in the substitution process
of the exports entries (${PORT:xxxx} where xxxx is the port being exposed inside the container).

To customize the docker container you may alter the entry point command line.
Additionally, Tiger will automatically add the Tiger Proxy certificate to the container’s operating
system list of trusted certificates.
This modification can be disabled by setting the property dockerOptions.proxied to false.

25

E.g.:

servers:
 exampleDockerServer:
 type: docker
 dockerOptions:
 proxied: false # default is true

For containers that should exit after a single command you may enable the oneShot property.

You can also copy files to the container by configuring the source and destinations paths of files or
folder to be copied.

If there is no health check configured inside the docker image, Tiger will try to guess a healthcheck
url by assuming the first exposed port as a get request to localhost to check for a successful startup
of the docker container (e.g. http://127.0.0.1:xxxx).

If no port is exposed at all, the startupTimeoutSec property will determine the wait period, after
which Tiger assumes the container is up and running.

If you have your local docker environment set up hosting the docker containers on a remote docker
hub server, you may set the environment variable TIGER_DOCKER_HOST to allow the health check url
determined on runtime to point to the remote host instead of localhost.

 To use this server type you must include the tiger-cloud-extension dependency!

Listing 7. Docker container configuration

dockerContainer_001:
 hostname: myDockerContainer
 type: docker
 dependsUpon: csv string
 startupTimeoutSec: int

 # MANDATORY URL from where to download the docker image.
 source:
 - dockerhubrepo.somewhere.org/repo/project/docker.image
 # OPTIONAL version of the docker image to download.
 version: 0.1.2
 # OPTIONAL the logs of the docker container are also written to a file, if no
logFile is
 # specified a default name will be used
 logFile: ./target/serverLogs/dockerContainer_001.log

 dockerOptions:
 # OPTIONAL Flag whether the container shall be modified by
 # o adding the Tiger Proxy certificate to the container operating system.
 # o adding docker.host.internal to the container's /etc/hosts file.
 # Default value is true.

26

http://127.0.0.1:xxxx

 proxied: true
 # OPTIONAL Flag whether the container is a one shot container or not.
 # One shot meaning it will execute a command and then stop.
 # Default value is false.
 oneShot: false
 # OPTIONAL The entry point command line to be used to start up this container
 # overwriting any configured entry point in the docker image.
 # Default value is empty meaning to use the configured entry point command line.
 entryPoint: chmod a+x /startup.sh && /startup.sh
 # OPTIONAL list of files to be copied to the container
 copyFiles:
 # path to the file or the folder to copy inside the container
 - sourcePath: ./example/path/file_to_copy.txt
 # path inside the container where the file should be copied to
 destinationPath: /path/in/container/file_to_copy.txt
 # OPTIONAL the file mode of the copied file as octal representation (see
https://en.wikipedia.org/wiki/File-system_permissions#numericNotation
 fileMode: 0633
 # a complete folder can also be copied instead of a single file
 - sourcePath: ./example/copy_folder
 destinationPath: /path/in/container/copy_folder

 # The following properties are explained in the General properties section above
 environment: []
 urlMappings: []
 exports: []

3.2.5. Docker Compose node

The docker compose node is a very tricky type of node because we use testcontainer library, which
is not exactly up to date in terms of docker compose support.
So many of the yaml compose files will need to be modified to work with the testcontainer library.

For now, we support the ePA2 FD module and the DEMIS Meldeportal.

If you want to use your own compose files, please note that Tiger copies and processes your yml
files to the target/tiger-testenv-mgr/${serverId} folder, replacing all variable/property expressions
(for details check this chapter).

The processing/copying flattens the file hierarchy, thus you must not depend on any additional file
resources in your docker compose files.
Each copied compose file will have a random UUID appended to its filename.

 To use this server type you must include the tiger-cloud-extension dependency!

Listing 8. Docker compose configuration

 type: compose
 dependsUpon: csv string

27

 startupTimeoutSec: int
 # OPTIONAL the logs of the docker compose are also written to a file, if no logFile
is
 # specified a default name will be used
 logFile: ./target/serverLogs/dockerCompose.log

 # MANDATORY list of yaml files to use to start up the services.
 # The entries can either be file paths or if starts with
 # classpath:.... a reference to a yaml file contained in the class path
 # (it could also be located inside a jar that is in the class path)
 source:
 - classpath:/de/gematik/test/tiger/testenvmgr/epa/titus-epa2.yml
 - classpath:/de/gematik/test/tiger/testenvmgr/epa/titus-epa2-local.yml

Listing 9. Demis docker compose example

demis_001:
 type: compose
 source:
 - classpath:/de/gematik/test/tiger/testenvmgr/demis/demis_localhost.yml
 startupTimeoutSec: 180

3.2.6. External Jar node

The External Jar node is along with the Docker container node the most important/used node for
test environments.
Any Jar archive executable which can be started with the java -jar command can be configured as
an external Jar node.

The options list are arguments added immediately after the java executable, while the arguments
list is appended after the -jar argument.

The working directory is the place where the jar file is downloaded to and executed from.
So if your jar archive expects some configuration files make sure to choose the folder appropriately.

If using the local: prefix you can also use wildcards to find any matching jar-files.
Tiger will use the following order to try to find a matching file:

• In the working directory a file with the filename contained in the source

• From the working directory a file with a relative path equal to the source

• In the working directory a file with a filename matching the source (eg. app-*.jar)

• From the working directory a file with a relative path equal and matching the filename of the
source (eg. ../target/app-*.jar)

java ${options} -jar externalJar.jar ${arguments}

28

Listing 10. External jar configuration

externalJar_001:
 hostname: mySpecialJar
 type: externalJar
 dependsUpon: csv string
 startupTimeoutSec: int

 # MANDATORY SINGLE ENTRY URL from where to download the Jar archive.
 # If the entry starts with "local:" followed by a file path the jar archive
 # is expected to be available at that location and no download is performed.
 # Only one entry is expected for this node type. Additional entries are silently
ignored.
 source:
 - http://myjars.download.org/myproject/myjar.jar
 # MANDATORY URL to check for the successful startup of this node.
 # A successful start is indicated by ANY answer on this URL.
 # Any status is accepted as long as there is an answer.
 # If set to "NONE" no check is performed and
 # the test environment manager will wait for the startup timeout.
 healthcheckUrl: http://127.0.0.1:8080
 # OPTIONAL only declare the server healthy once the specified return code
 # is given
 healthcheckReturnCode: int
 # OPTIONAL the logs of the externalJar are also written to a file, if no logFile is
 # specified a default name will be used
 logFile: ./target/serverLogs/externalJar_001.log

 externalJarOptions:
 # OPTIONAL folder from where to start the external jar.
 # The downloaded jar file will be stored and executed from here
 # The default value is empty, which means that the operating-system-specific
 # temporary folder will be used.
 # hint: when the jar file is taken from a local directory and is set in source
 # and the workingDir is set then the workingDir has to be the directory where
 # the jar file is located
 workingDir: /home/user/test/myspecificjar
 # OPTIONAL Options to pass in to the java executable call.
 options: []
 # OPTIONAL provide additional arguments to the jar archive call.
 # Default value is empty.
 arguments:
 - --testarg1
 - -singledasharg2
 - --paramarg3=testvalue1

 # The following properties are explained in the General properties section above
 environment: []
 urlMappings: []
 exports: []

29

By default, the JVM used to start the JAR-File is the taken from the java.home system property, thus
using the same JVM with which Tiger was started.
To change the JVM used you can set the property tiger.lib.javaHome (e.g. by setting
-Dtiger.lib.javaHome, by setting TIGER_LIB_JAVAHOME in the environment or by setting lib.javaHome
in the tiger.yaml).

3.2.7. External URL node

The symbolic node type that will not start a server instance, but simply allows external services to
be used via the configured hostname.
This is achieved by the test environment manager instructing the local Tiger Proxy to provide a
route for the symbolic hostname to the external URL of the service.

So, in the following example, the test suite can send HTTP(S) requests to the server
"http://myExternalServer" via the local Tiger Proxy, which will be rerouted to the external URL
"https://www.medizin.de".
If it is ever necessary to change the external URL, the test suite does not have to be modified, only
the routing configuration for the node has to be changed.

Given the nature of this type, the environment section has no effect and is not to be used.

Listing 11. External URL configuration

externalUrl_001:
 hostname: myExternalServer
 type: externalUrl
 dependsUpon: csv string
 startupTimeoutSec: int

 # MANDATORY URL of the external server
 source:
 - https://www.medizin.de

 # OPTIONAL URL to check for successful startup of this node.
 # A successful start is indicated by ANY answer on this URL.
 # Any status is accepted as long as there is an answer.
 # If the value is not set, then no health check is carried out
 # in the startup phase, instead the startupTimeout is waited for.
 # After this timeout it is assumed that the server is up.
 healthcheckUrl: https://www.medizin.de/healthyState.jsp
 # OPTIONAL only declare the server healthy once the specified return code
 # is given
 healthcheckReturnCode: int
 # OPTIONAL the logs of the externalUrl are also written to a file, if no logFile is
 # specified a default name will be used
 logFile: ./target/serverLogs/externalUrl_001.log

 # The following properties are explained in the General properties section above
 # IGNORE for this type as it has no effect
 environment: []

30

 urlMappings: []
 exports: []

3.2.8. Helm Chart node

The helm chart node allows to start a helm chart from the configured source (local helm chart file /
folder or remote helm chart).
The helm chart is started and the server is ready when all pods are up and running, if port-forward
is used (if exposedPorts are set), then port-forwarding is also done and the startup is finished and
the service can be used for testing.

 To use this server type you must include the tiger-cloud-extension dependency!

Listing 12. Helm chart configuration

servers:
 testHelmChart_Nginx:
 type: helmChart
 startupTimeoutSec: 50
 # MANDATORY repository from where to download the docker image
 # if the helm chart is stored on the local file system that the
 # workingDir should be set.
 source:
 - bitnami/nginx
 # OPTIONAL version of the image
 version: 1.1.0
 helmChartOptions:
 # The kubernetes context
 context:
 # OPTIONAL if no working directory is set the default . is used.
 # if the helm chart is stored on the local file system the workingDir
 # should be set.
 workingdir:
 # OPTIONAL prints out debug messages if set to true, default is false.
 debug: true
 # OPTIONAL override the POD_NAMESPACE environment variable if set.
 # if not set, "default" will be used.
 nameSpace: buildslaves
 # MANDATORY pod name of the helm chart
 podName: test-tiger-nginx
 # OPTIONAL key-value pairs that will be used for starting the helm chart
 values:
 # OPTIONAL should contain a list of pods for the health check, regex can be
used.
 healthcheckPods:
 - test-tiger-nginx-.*
 # OPTIONAL contains a list of regex to identify the pods whose logs
 # should be forwarded to the console and Tiger Workflow UI.
 logPods:
 - test-tiger-nginx.*

31

 # OPTIONAL contains a list that will be used for the port forwarding,
 # if empty no port forwarding is done. The syntax is:
 #
<POD_NAME_OR_REGEX>,<LOCAL_PORT>:<FORWARDING_PORT>[,<LOCAL_PORT>:<FORWARDING_PORT>]*
 exposedPorts:
 - test-tiger-nginx.*,8080:80

3.2.9. Tiger Proxy node

The most complex and versatile node type.
The Tiger Proxy will be started as an embedded spring boot application.
This way the start-up time can be minimized, and it is always guaranteed to start the current
version.

Listing 13. Tiger Proxy configuration

tigerProxy_001:
 hostname: myTigerProxy
 type: tigerProxy
 dependsUpon: csv string
 startupTimeoutSec: int

 tigerProxyConfiguration:
 # OPTIONAL port of the web user interface and the proxy management
 # (e.g. rbel-message forwarding)
 # Default value is empty, which means a random port will be used.
 # The chosen port is stored with the key tiger.internal.localproxy.admin.port in
 # the TigerGlobalConfiguration
 adminPort: 8080
 # OPTIONAL server name of the node this proxy shall be used as reverse proxy for.
 # If set the routes will be configured appropriately.
 # Default value is empty.
 proxiedServer: externalJar_001
 # OPTIONAL port of the proxy, where the proxy expects to receive proxy requests
 # Default value is empty, which means a random port will be used.
 proxyPort: 3128
 # OPTIONAL protocol the proxy is expecting requests in. One of [http|https]
 # Default value is http
 proxiedServerProtocol: http
 # configures the proxy itself. For more details
 # please check the chapter about the local test suite Tiger Proxy below
 ...
 proxyRoutes:
 - from: http://foobar
 # defines a forward-proxy-route from this server...
 to: https://cryptic.backend/server/with/path
 # to this server
 ...

 # The following properties are explained in the General properties section above

32

 environment: []
 urlMappings: []
 exports: []

The configuration of the Tiger Proxy is explained in detail in the section Configuring the local test
suite Tiger Proxy

3.2.10. httpbin node

The httpbin simply starts a httpbin server.
This provides several endpoints against which you can perform all kinds of http requests.
The server port on which the server starts can be configured.

Listing 14. httpbin configuration

httpbin:
 type: httpbin
 serverPort: ${free.port.0}
 healthcheckUrl: http://localhost:${free.port.0}/status/200

3.3. Provided node templates
Besides these basic nodes we also support tailored templates for nodes like IDP, ePA, ERp and
DEMIS.
This should allow you to bring up project specific test environments very fast.

All currently supported templates can be found in the tiger-testenv-mgr modul in the yaml file at
/src/main/resources/de/gematik/test/tiger/testenvmgr/templates.yaml

To use such a template, just use the template attribute:

myPersonalTestIDPInTheRU:
 template: idp-rise-ru

or if you want to have an environment with a local reference implementation of the ERezept
Fachdienst

myLocalTestIDP:
 template: idp-ref
 hostname: idp

myLocalTestERp:
 template: erzpt-fd-ref
 dependsUpon: myLocalTestIDP

33

https://github.com/gaul/java-httpbin

3.3.1. Local IDP reference nodes

This template provides the reference implementation of the IDP server as a local docker container.
The docker image is loaded from a gematik internal docker registry server.

The system property IDP_SERVER is set to the URL of the Discovery Document end point and is
available for all subsequently initiated test environment nodes.

3.3.2. External IDP RISE instance nodes

The idp-rise-ru template provides the RU instance of RISE’s IDP server as an "external URL".
The system properties IDP_SERVER and GEMATIK_TESTCONFIG are set to the URL of the Discovery
Document end point and a config-file for the IDP test suite respectively.
They are available for all subsequently initiated test environment nodes.

The idp-rise-tu template provides the TU instance accordingly.

3.3.3. Local ERp reference nodes

This template provides the reference implementation of the eRezept server as a local docker
container.
The docker image is loaded from a gematik internal docker registry server.
Make sure that an IDP server node is instantiated before the ERp FD is started and that it is
available under http://idp or adapt the environment variable configuration.

A large list of environment variables is set.
But don’t worry, it is just the server that uses them.

3.3.4. Local ePA2 reference nodes

This template provides the gematik reference Aktensystem simulation as docker compose.

3.3.5. Local PSSim node

This template provides a Primärsystem simulation (as a jar), usable for ePA.
See https://wiki.gematik.de/display/PTP/epa-ps for more information.

3.3.6. Local KonSim node

This template provides a Konnektor simulation (as external jar).
See https://wiki.gematik.de/display/PTP/KonSim for more information.

3.3.7. Local ePA FdV Sim

This template provides FdV simulation, usable for ePA.

3.3.8. Local DEMIS reference nodes

This template provides the DEMIS Meldeportal as local docker compose.

34

http://idp
https://wiki.gematik.de/display/PTP/epa-ps
https://wiki.gematik.de/display/PTP/KonSim

3.4. Configuring the local test suite Tiger Proxy
The local Tiger Proxy for the test suite can be configured by using the following section(s) in the
tiger.yaml file.
For more information about what the Tiger Proxy is and how it works see the chapter Tiger Proxy
basics

Flag whether to activate the local Tiger Proxy. The local tiger proxy field will be
null if this property is set to false
Default value is true
localProxyActive: true

Specifiy additional yaml-files to read in during startup
additionalConfigurationFiles:
 -
 # the path to the file to read
 filename: specialEnvironment.yaml
 # the key to which to map the given file. "tiger" is the base-key for the
tiger.yaml-file
 baseKey: tiger

the block where all the Tiger Proxy configuration properties are located
tigerProxy:
 # the port under which the server will be booted
 adminPort: 7777
 # logLevel of the proxy-server. DEBUG and TRACE will print traffic, so use with
care!
 proxyLogLevel: TRACE
 # section to configure whether and where the proxy should dump a tiger traffic file
on shutdown
 fileSaveInfo:
 # should the traffic be logged to a file?
 writeToFile: true
 # configure the file name
 filename: "foobar.tgr"
 # default false, removes any potentially existing saved tgr traffic file on
startup.
 clearFileOnBoot: true
 # read traffic from a file at startup
 sourceFile: "sourceFile.tgr"
 # filter messages read from file (JEXL expression)
 readFilter: "message.statusCode == '200'"

 # a list of routing entries the proxy should apply to traffic
 proxyRoutes:
 # defines a forward-proxy-route from this server...
 - from: http://foobar
 # to this server
 to: https://cryptic.backend/server/with/path
 # reverse proxy-route. http://<tiger-proxy>/blub will be forwarded

35

 - from: "/blub"
 to: "https://another.de/server"
 # the traffic for this route will NOT be logged (default is false)
 disableRbelLogging: true
 hosts:
 - "www.google.com"
 - "www.bing.com"
 # For reverse proxy-routes this allows to differentiate requests based on the
host-header. This is useful when the DNS-resolvement of the client can be influenced,
but not the ports used.

 # a list of modifications that will be applied to every proxied request and response
 modifications:
 # a condition that needs to be fulfilled for the modification to be applied
 # (uses JEXL grammar)
 - condition: "isRequest"
 # which element should be targeted?
 targetElement: "$.header.user-agent"
 # the replacement string to be filled in.
 # This modification will replace the entire "user-agent" in all requests
 replaceWith: "modified user-agent"

 - condition: "isResponse && $.responseCode == 200"
 targetElement: "$.body"
 # The name of this modification.
 # This can be used to identify, alter or remove this modification.
 # The name is optional, but if it is used, it has to be unique.
 name: "body replacement modification"
 # This will replace the body of every 200 response completely with the given json-
string
 # (This ignores the existing body. For example this could be an XML-body.
 # Content-Type-headers will NOT be set accordingly).
 replaceWith: "{\"another\":{\"node\":{\"path\":\"correctValue\"}}}"
 - targetElement: "$.body"
 # The given regex will be used to target only parts of targeted element.
 regexFilter: "ErrorSeverityType:((Error)|(Warning))"
 # This modification has no condition,
 # so it will be applied to every request and every response
 replaceWith: "ErrorSeverityType:Error"

 # can be used if the target-server (to) is behind another proxy
 forwardToProxy:
 hostname: 192.168.110.10
 port: 3128
 type: HTTP
 noProxyHosts:
 - "localhost"
 # The Tiger Proxy will route google.com to google.com even if no route is set.
 # The traffic routed via this "forwardAll"-routing will be logged by default
 # (meaning it will show up in the Rbel-Logs and be forwarded to tracing-clients)
 # This can be deactivated by setting this flag to false

36

 activateForwardAllLogging: true
 # Limits the rbel-Buffer to approximately this size.
 # Note: When Rbel debugging is activated the size WILL vastly exceed this limit!
 rbelBufferSizeInMb: 1024
 # If set to false disables traffic-analysis by Rbel.
 # Deactivating will not impede proxy-forwarding nor
 # the traffic-endpoints.
 activateRbelParsing: true
 # While parsing the Tiger Proxy can block the communication from completing.
 # The end answer from the Tiger Proxy is only transmitted when parsing is completed
 # (and the message pair can be seen in the log). When 'false' the parsing is done
 # asynchronous.
 # Default is true ONLY for the local Tiger Proxy, otherwise default is false!!
 parsingShouldBlockCommunication: false
 # This will share the WebUI-Resources (various CSS-files) from the Tiger Proxy
 # locally, thus enabling usage when no internet connection exists
 localResources: true
 # When active the host-headers are rewritten even for a reverse-proxy-route
 rewriteHostHeader: true
 # This option can be used to deactivate TLS-Termination. Only deactivate this in
 # conjunction with a directReverseProxy
 activateTlsTermination: true

 tls:
 # Can be used to define a CA-Identity to be used with TLS. The Tiger Proxy will
 # generate an identity when queried by a client that matches the configured route.
 # If the client then in turn trusts the CA this solution will provide you with a
seamless
 # TLS experience. It however requires access to the private-key of a trusted CA.
 serverRootCa: "certificate.pem;privateKey.pem;PKCS8"
 # Alternative solution: now all incoming TLS-traffic will be handled using this
identity.
 # This might be easier but requires a certificate
 # which is valid for the configured routes
 serverIdentity: "certificateAndKeyAndChain.p12;Password"
 # Defines which SSL-Suites are allowed. This will delete all default-suites and
only add the one
 # defined here. This configures the server-side of the proxy. Available values can
be found here:
 #
https://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html
 serverSslSuites:
 - "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA"
 # This configures the SSL-Suites for the client-side. Available values can be
found here:
 #
https://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html
 clientSslSuites:
 - "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA"
 # Define which TLS protocols the server will allow/use. Available values can be
found here:

37

 #
https://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html
 clientSupportedGroups:
 - "brainpoolP256r1"
 - "brainpoolP384r1"
 - "prime256v1"
 - "secp384r1"
 # Define the groups to be offered in the "client hello" message. More information
can be found here:
 # https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.7
 serverTlsProtocols:
 - "TLSv1.2"

 # This identity will be used as a client-identity for mutual-TLS when forwarding
to
 # other servers. The information string can be
 # "my/file/name.p12;p12password" or
 # "p12password;my/file/name.p12" or
 # "cert.pem;key.pkcs8" or
 # "rsaCert.pem;rsaKey.pkcs1" or
 # "key/store.jks;key" or
 # "key/store.jks;key1;key2" or
 # "key/store.jks;jks;key"
 #
 # Each part can be one of:
 # * filename
 # * password
 # * store-type (accepted are P12, PKCS12, JKS, BKS, PKCS1 and PKCS8)
 forwardMutualTlsIdentity:
"directory/where/another/identityResides.jks;changeit;JKS"
 # domain which will be used as the server address in the TLS-certificate
 domainName: deep.url.of.server.de
 # Alternate names to be added to the TLS-certificate
 # (localhost and 127.0.0.1 are added by default)
 alternativeNames:
 - localhost
 - 63.54.54.43
 - foo.bar.server.com
 # the file into which the master-secrets are written. For this to work
 # the tiger-java-agent has to be attached to the JVM
 # (eg. -javaagent:tiger-java-agent-3.1.4.jar). This can be done by
 # executing the goal 'attach-tiger-agent' to the tiger-maven-plugin.
 masterSecretsFile: "masterSecretsFile.txt"

 # the given folders are loaded into RBel for analysis. This is only necessary to
decrypt
 # traffic when analyzing it. It has no effect on the proxy-functions themselves.
 keyFolders:
 - .

 # Filter out any messages larger from parsing (saving performance)

38

 skipParsingWhenMessageLargerThanKb: 8000
 # Filter out any messages (or message parts) from displaying
 skipDisplayWhenMessageLargerThanKb: 512

 # A list of upstream Tiger Proxies. This proxy will try to connect to all given
sources to
 # gather traffic via the STOMP-protocol. If any of the given endpoints are not
accessible
 # the server will not boot. (fail fast, fail early)
 trafficEndpoints:
 - http://another.tiger.proxy:<proxyPort>
 trafficEndpointConfiguration:
 # the name for the traffic Endpoint. can be any string, which will be
 # displayed at /tracingpoints
 name: "tigerProxy Tracing Point"

3.5. Standalone mode vs. implicit startup with test
suite
If your test environment is very "expensive" to start or if you are developing your test suite
scenarios thus starting many test runs in a short time, you might want to keep your test
environment running and not shut it down after each run.
To do so, you can simply use the tiger maven plugin to start your test environment in standalone
mode.

First prepare a standalone test environment configuration file (call it for example tiger-
standalone.yaml) containing all the server nodes needed and with a deactivated the local Tiger
Proxy section.

Now set the env var TIGER_TESTENV_CFGFILE or the Java system property tiger.testenv.cfgfile to
point to this file.

And add the plugin block to your pom.xml

 <plugin>
 <groupId>de.gematik.test</groupId>
 <artifactId>tiger-maven-plugin</artifactId>
 <version>${version.tiger}</version>
 </plugin>

If you start the test environment manager standalone, it will keep the nodes running until you
enter quit into the console or kill the process with Ctrl + C or the operating equivalent commando to
the UNIX command kill ${PROCESS_ID}.
In the latter case it is not guaranteed that all processes are cleanly shut down.
Please check your process list with operating system specific tools.

export TIGER_TESTENV_CFGFILE=....../tiger-standalone.yaml

39

mvn tiger:setup-testenv

In case you also need cloud extension server types (docker, helmchart) make sure to add the Tiger
cloud extensions as dependency to the plugin block.

Now before starting your test suite scenarios you need to

• disable / remove the test nodes in your default tiger.yaml (either by setting the property active
to false or remove the server node entry completely).
If you forget to do this, two nodes will be instantiated (one from the standalone test
environment manager and the second during test run from the test environment manager
started via the test suite hooks).

• and add routes for each node to the local Tiger Proxy.
If you forget to do this, your test suite will not be able to access the test nodes under their
configured hostname as this configuration is only known to the standalone test environment
manager and NOT to the local tiger proxy started by the test suite hooks.

Best practice is to have three test environment configuration files:

• tiger-standalone.yaml to enable a persistent test environment during the development of test
suite scenarios

• tiger-nonodes.yaml for the test suite that will instantiate no nodes but only configure the routes
to the nodes from the standalone test environment manager

• tiger.yaml a complete configuration that can be used in CI or after the test suite development is
completed.

The first and the latter most of the time are identical besides the root level flag localProxyActive.
So you may skip the first and just use it with two different values being set.

3.6. Using Environment variables and system
properties

3.6.1. Token/variable substitution

Entries in the exports list of a node will be parsed and specific tokens will be substituted:

• ${PORT:xxxx} will be replaced with the port on the docker host interface

• ${NAME} will be replaced with the hostname of the node

All exports entries of a node will be present when subsequent nodesare instantiated and can be
used in the following properties:

Docker node:

• source list

• environment list

40

Tiger Proxy node:

• from/to route URLs

External URL node:

• source list

External Jar node:

• options list

41

Chapter 4. Tiger Proxy

4.1. Excurse: What are proxies, reverse, forward
There are a lot of different types of proxies.
Here we talk only about HTTP and HTTPS proxies!

4.1.1. Forward proxies

Forward proxies work like a switch-station: You send a packet to your destination, via proxy.
The proxy receives the packet, sees the address and can send that packet to wherever he sees fit.
To use a forward proxy, the sender has to be aware of it and send the packet accordingly.

This allows the creation of virtual domains, something we use extensively in tiger.

A forward proxy can always read the entire content of your communication, something we also use
heavily.

Lastly a forward proxy acts as a man-in-the-middle, enabling the penetration of TLS-traffic.
We also use this, but we will explain it in more depth later.

4.1.2. Reverse proxies

Reverse proxies also receive traffic and may reroute them at their own discretion.
But unlike a forward proxy a reverse proxy is invisible to the sender.
Reverse proxies act like normal servers and are addressed as such.
They then send the received packet to its actual destination and return the answer to the original
caller.

The reverse proxy can also read the complete traffic.

The eventual destination is opaque to the original caller.
This also enables path-rewriting (for example the GET http://reverse.proxy.de/my/deep/url might be
mapped to http://gematik.de/deep/url, eliminating the /my)

A reverse proxy also terminates https, always.
This is less of a problem with a reverse proxy since it is technically not a man-in-the-middle attack,
due to the traffic being addressed to the reverse proxy.

4.2. Tiger Proxy basics
The Tiger Proxy is a proxy-server.
It comes in two flavours: Tiger Proxy and Tiger Standalone Proxy.
The standalone tiger proxy is started from a JAR-file.
The test environment manager boots the main tiger proxy (local tiger proxy) and also any
additional ones (normal tiger proxy, not standalone).

Both types have a proxy-port (configurable via tigerProxy.proxyPort), which supports both http-

42

http://reverse.proxy.de/my/deep/url
http://gematik.de/deep/url

and https-traffic, (so you do not have to differentiate between the two).
Additionally, they have an admin-port (configurable via tigerProxy.adminPort).
This provides the Tiger Proxy Log to monitor the traffic (described in detail here), a rest-interface to
customize the behavior (add/delete route, add/delete modifications) and a web-socket interface to
stream rbel-messages between multiple Tiger Proxies.

4.3. Understanding routes
Routes are the fundamental mechanic of how the Tiger Proxy handles traffic.
They can be for a forward- or reverse-proxy.
A route has the following properties:

4.3.1. from

From where should the traffic be collected?
This can either be an absolute URL (e.g. http://foobar), which defines a forward-proxy route, or
relative (e.g. /blub), defining a reverse-proxy-route.
Please note: You can freely add parts (e.g. http://foobar/extra/part) to further specify the mapping.

You can add multiple routes that match the same URL.
If multiple matches are found the most specific route is select.
For example if you have two routes / and /foo then for a request to /foo/bar the route /foo will be
selected.

A route will only match when the proxy-mode is met.
A reverse-proxy-route will thus not match when a forward-proxy request is received.
To disable this proxy-mode matching you can set the flag matchForProxyType to false (default is true).

4.3.2. to

The target of the mapping.
This has to be an absolute URL.
The Tiger Proxy will, upon receiving a request to this mapping, execute a matching request to the
defined host.

An example.
Consider the following route:

tigerProxy:
 proxyRoutes:
 - from: http://my.domain/
 to: http://orf.at/

The "http://" in the from property indicates that we have a forward-proxy route defined.
So when we execute: (assuming the Tiger Proxy is started locally under the port 1234)

curl -x http://localhost:1234 http://my.domain/news

43

http://foobar
http://foobar/extra/part

The result will match the following curl

curl http://orf.at/news

Additional headers are kept and just patched through.
The same goes for the body and the HTTP-Method.

Added parts of the from-URL are stripped when forwarding.
Meaning: If you have a mapping

tigerProxy:
 proxyRoutes:
 - from: http://my.domain/deep/
 to: http://orf.at/blub/

and you execute GET http://my.domain/deep/deeper, you will get the result of GET http://orf.at/blub/
deeper (the /deep in between has been eliminated along with my.domain).

4.3.3. Trailing Slashes

Trailing slashes in routes may be significant for the server.
Thus, the handling in the tiger-proxy is important.
To achieve a consistent behavior while maintaining ease of use, the following rules apply:

• If the request is longer then the from-path of the route (eg. if the "from" is "/foo" and the request
is "/foo/bar", then "/bar" is the deep-path), the trailing slash behavior from the request is taken.
This only is the case for more path-fragments (/foo/bar), and not simply a longer string (/foobar),
as this would not be matched to the route.

• If the to-URL has a trailing slash, the request is forwarded with a trailing slash.

• Finally, if the request ends with a slash and the from-URL does NOT end with one, a trailing
slash is added.
(The logic being the slash in the from-URL expresses an anticipated slash.
Thus, a slash being present in the request is simply "expected".)

This leads to the following examples:

from to request forwarded to

"/webapp/" "/api/" "/webapp" "/api/"

"/webapp/" "/api" "/webapp" "/api"

"/webapp/" "/api/" "/webapp/" "/api/"

"/webapp/" "/api" "/webapp/" "/api"

"/webapp" "/api/" "/webapp" "/api/"

"/webapp" "/api" "/webapp" "/api"

44

http://my.domain/deep/deeper
http://orf.at/blub/deeper
http://orf.at/blub/deeper

from to request forwarded to

"/webapp" "/api/" "/webapp/" "/api/"

"/webapp" "/api" "/webapp/" "/api/"

"/webapp<irrelevant>" "/api<irrelevant>" "/webapp/foo" "/api/foo"

4.3.4. hosts

In some instances you might be pressed to "hosts" multiple servers on one tiger-proxy.
This can happen when you can influence DNS-Resolvement, but neither the path nor the port used.
In this case you can use the hosts-property to define which hosts should be routed to which target.

tigerProxy:
 proxyRoutes:
 hosts:
 - "www.google.com"
 - ".*.bing.com"

The entries are matched first as a total match, failing that as regular expressions.
If you want to add ports you are free to do so: "myHost:80".
This however will necessitate that the ports on all entries in this specific list are given (this does not
apply to other routes).

4.3.5. Multiple targets

Sometimes you can only at runtime know which target to use.
This can be achieved by using the to-property as a list of targets:

tigerProxy:
 proxyRoutes:
 - from: /
 to:
 - http://orf.at/blub/
 - http://ard.de/bla/

When booting the tiger-proxy the proxy tries to reach the target host by sending a HEAD-request to
the host (dropping the path).
If the server sends a valid HTTP (or HTTPS) response, the target is considered reachable and the
route is used.
If no target can be reached an exception is thrown.
The return code is ignored.

4.3.6. criterions

As an additional measure for a more fine-grained matching you can use criterions.
These are JEXL-expressions which have to be fulfilled for the route to be used.

45

This can be leveraged to make the routing decision dependent on the content of the message.

tigerProxy:
 proxyRoutes:
 - from: /
 to: http://orf.at/blub/
 criterions:
 - $.header.foo == 'bar'

This will only forward messages where the header contains a key "foo" with the value "bar".

4.3.7. disableRbelLogging

You can deactivate the rbel-Logging on a per-Route basis.
Rbel is a versatile and powerful tool, but the analysis of individual messages consumes a lot of both
CPU and memory.
Deactivating it for routes in which it is not needed is therefore a good idea.

4.3.8. Authentication

You can add optional authentication configuration which will be added to the forwarded message.
Here either Basic access authentication or Bearer Token can be used:

tigerProxy:
 proxyRoutes:
 - from: http://my.domain/basicAuth/
 to: http://orf.at/blub/
 authentication:
 username: "test1"
 password: "pwd2"
 - from: http://my.domain/bearerToken/
 to: http://orf.at/blub/
 authentication:
 bearerToken: "blubblab"

Please note that the phrase "Bearer " will be added automatically.
Please do not add it yourself!

4.3.9. matchForProxyType

By default, a proxy route will only match when the proxy-mode defined by the from attribute is met.
For example, a route with from: /foo will not match with a forward-proxy request like so:

curl -x localhost:59163 http://backend.domain/

To enable matching for both proxy-modes you can use the matchForProxyType-flag:

tigerProxy:

46

http://backend.domain/

 proxyRoutes:
 - from: /foobar
 to: http://orf.at/blub/
 matchForProxyType: false

This will match with both of the following requests:

curl -x localhost:59163 http://backend.domain/foobar
curl http://localhost:59163/foobar

4.4. TLS, keys, certificates a quick tour on proxies
A fundamental part of a proxy setup is TLS.
Since a proxy is a constant man-in-the-middle attack TLS is designed to make this exact scenario
(eavesdropping while forwarding) impossible.
Since a lot of the traffic in the gematik context is security-relevant and thus TLS-secured this point
is a very relevant one.

Fundamentally breaking into TLS requires two things:

• A certificate which the server can present which is valid for the given domain

• The certifying CA (or a CA reachable via a certification path) has to be part of the client
truststore

There a different ways to reach these two requirements.
Which one should be taken is dependent on the setting and the client used (most importantly, of
course: can you alter the truststore for the test-setup?)

Here are a few things to know and ways in which to enable TLS:

4.4.1. TLS and HTTPS-Proxy

TLS can be done via a http- or a https-proxy.
The proxy-protocol does NOT equate to the client-server-protocol.
To minimize the headache in configuration it is therefore strongly recommended to simply always
use the http-proxy (sidenote: using a http-proxy does NOT reduce the security of the overall
protocol.
The security still relies on server-certificate-verification.)

If, however, you can not avoid using the https-proxy you have to make sure that you add the given
certificate to your truststore.
In class TigerProxy.java in Tiger there are methods such as SSLContext
getConfiguredTigerProxySslContext(), X509TrustManager buildTrustManagerForTigerProxy() and
KeyStore buildTruststore() which can help you configure the SSLContext in your case, if you use
HTTP 3rd party libraries (Unirest, okHttp, RestAssured, etc.) as well as vanilla Java.
If you encounter any problems, please contact us.

47

4.4.2. Dynamic server identity

For successfully breaking into TLS traffic the Tiger Proxy needs to present a certificate which
features the domain-name of the server.
Since the domain-names are known only at runtime, we generate the needed certificate on-the-fly
during the first connection.

For a forward-proxy this is easy: The client sends not only the path, but the complete URL to the
proxy, letting him handle DNS-resolution.
So when the Tiger Proxy receives a new request the necessary domain-name is given by the client.
A new, matching, certificate is generated (these are cached) and presented.
To complete the setup the client-truststore needs to be patched.
The CA used by the Tiger Proxy is dynamically generated on each startup.

For a reverse-proxy the domain name, which should be used, is unknown to the Tiger Proxy (DNS-
resolution is done on the client-side).
Thus, a domain-name needs to be provided, which should be used for certificate-generation:

tigerProxy:
 tls:
 domainName: deep.url.of.server.de

4.4.3. Client-sided truststore modification

When using a non-default certificate (which will almost always be the case for the Tiger Proxy) the
modification of the client-truststore is necessary.
For cases where the client is running in the same JVM as the target Tiger Proxy (which is the typical
case for a tiger-based testsuite) there exists helper method to make this task easier.

Depending on your HTTP- or REST- or SOAP-API you will need to choose the exact way yourself.
The following two examples might give you some idea of what to do.

Unirest.config().sslContext(tigerProxy.buildSslContext());

 OkHttpClient client = new OkHttpClient.Builder()

 .proxy(new Proxy(
 Proxy.Type.HTTP,
 new InetSocketAddress(
 "localhost",
 tigerProxy.getPort())))

 .sslSocketFactory(
 tigerProxy.getConfiguredTigerProxySslContext().getSocketFactory(),
 tigerProxy.buildTrustManagerForTigerProxy())

48

 .build();

4.4.4. Custom CA

If you can not or don’t want to alter the client-truststore you have two choices: You can either
provide a custom CA to be used (and trusted by the client) or you can give the certificate to be used
by the Tiger Proxy.
To set a custom CA to be used for certificate generation simply specify it:

tigerProxy:
 tls:
 serverRootCa: "certificate.pem;privateKey.pem;PKCS8"
for more information on specifying PKI identities in tiger see "Configuring PKI
identities"

4.4.5. Fixed server identity

The final, easiest and most unflexible way to solve TLS-issues is to simply give a fixed server-
identity.
This identity will be used for all routes, but only if it matches the domain-name given by the client
during the handshake.
As a fallback (if the domain-name does not match) the dynamic server-identity will be used.

tigerProxy:
 tls:
 serverIdentity: "certificateAndKeyAndChain.p12;Password"

If you want to use the fixed-server identity only for requests to matching hosts and you have NOT
supplied a serverRootCa, you can use the allowGenericFallbackIdentity-property:

tigerProxy:
 tls:
 serverIdentity: "certificateForFoobar.p12;Password"
 allowGenericFallbackIdentity: true

If certificateForFoobar.p12 contains a certificate for the FQDN foobar.com, then a request to
foobar.com will use this certificate.
If the request is to barfoo.com the generic server-identity will be used.
If you have supplied a serverRootCa this CA will always be used for any request for which an exact
match is not found.

4.4.6. Multiple server identities

Sometimes you might want to use different server-identities for different hosts that are proxied.
This can be achieved by using the serverIdentities-property.

49

Simply list the properties, the proxy will automatically try to choose the correct one.

tigerProxy:
 tls:
 serverIdentities:
 - "someIdentity.p12;00"
 - "anotherIdentity.p12;changeit"

4.4.7. OCSP stapling

If you want the Tiger Proxy to use OCSP stapling you can directly specify the OCSP-Signer to use in
the configuration.

tigerProxy:
 tls:
 ocspSignerIdentity: "myOcspSigner.p12;Password"

The server will then use this OCSP-Signer to create a fake OCSP-Response during the TLS-
handshake.

4.4.8. TLS Decryption in wireshark

Sometimes you might want to look at decrypted TLS-traffic in wireshark.
To achieve this we need to extract the masterSecrets of every connection from the Tiger Proxy and
provide them to wireshark.
This is actually pretty straight forward, with one big caveat: It is very insecure to access the
masterSecrets of a TLS-connection, so we need to attach a Java-Agent to the VM.

When you are using the Tiger Proxy in a normal tiger-testsuite you can simply add the
<goal>attach-tiger-agent</goal> goal to the tiger-maven-plugin:

 <plugin>
 <groupId>de.gematik.test</groupId>
 <artifactId>tiger-maven-plugin</artifactId>
 <version>${project.version}</version>
 <executions>
 <execution>
 <phase>generate-test-sources</phase>
 <goals>
 <goal>generate-drivers</goal>
 <goal>attach-tiger-agent</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

This will modify the argLine property used by failsafe to start the testsuite and attach the

50

TigerAgent to the VM.
Next we need to set the filename where to write the masterSecrets to:

tigerProxy:
 tls:
 masterSecretsFile: "myMasterSecrets.txt"

The Tiger Proxy will write the secrets to the given file.

The final step is to import the masterSecrets into wireshark:

Go to Edit → Preferences.
Open the Protocols tree and select TLS.
Alternatively, select a TLS packet in the packet list, right-click on the TLS layer in the packet details
view and open the Protocol preferences menu.
Set the (Pre)-Master-Secret log filename to the file containing the master secrets.
Now wireshark should decrypt TLS traffic routed through the Tiger Proxy on-the-fly.

4.5. Modifications
Modifications are a powerful tool to alter messages before forwarding them.
They can be applied to requests and responses, to routes in forward- and reverse-proxy-mode.
You can choose to modify only specific parts of the message and only alter messages, if certain
conditions are met.
Response messages support so called "reason phrases" which are small text explanations to the
response code, e.g. "200 OK", ("OK" is a reason phrase).
You can add, modify and remove reason phrases.

Below is a sample configuration giving insight into how modifications are organized:

tigerProxy:
 modifications:
 # a list of modifications that will be applied to every proxied request and
response

 # The following modification will replace the entire "user-agent" in all
requests
 -
 condition: "isRequest"
 # a condition that needs to be fullfilled for the modification to be applied
(JEXL grammar)
 targetElement: "$.header.user-agent"
 # which element should be targeted?
 replaceWith: "modified user-agent"
 # the replacement string to be filled in.

 # The following modification will replace the body of every 200 response
completely with the given json-string

51

 # (This ignores the existing body. For example this could be an XML-body.
Content-Type-headers will NOT be set accordingly)
 -
 condition: "isResponse && $.responseCode == 200"
 targetElement: "$.body"
 name: "body replacement modification"
 # The name of this modification. This can be used to identify, alter or remove
this modification. A name is optional
 replaceWith: "{\"another\":{\"node\":{\"path\":\"correctValue\"}}}"

 # The following modification has no condition, so it will be applied to every
request and every response
 -
 targetElement: "$.body"
 regexFilter: "ErrorSeverityType:((Error)|(Warning))"
 # The given regex will be used to target only parts of targeted element.
 replaceWith: "ErrorSeverityType:Error"

4.6. Mesh set up
One of the fundamental features of the Tiger Proxy is mesh set up AKA rbel-message forwarding.
This transmits the information about the messages, which the proxy has logged, to other Tiger
Proxies (where they will be logged as well).
This enables the creation of "proxy-meshes", staggered Tiger Proxies.

In a mesh set up the "remote tiger proxy" is the one which intercepts the traffic and sends the
information.
Conversely, the "receiving tiger proxy" receives the information about the message from the remote
tiger proxy.
The "local tiger proxy" is the main tiger proxy booted by the testsuite.
If you configured it to receive traffic from another tiger proxy (which should always be the case
when you are doing a mesh set up) then it is also a receiving tiger proxy.

Common scenario for this approach might be the use of multiple reverse-proxies on the root level
(e.g. when the client only allows the configuration of the server IP or domain, but no path-prefix) or
the aggregation of traffic across machine-boundaries (e.g. one constantly running Tiger Proxy
which is used by a testsuite on another machine).

52

Tiger Proxy message flow

Test environment

test objectsreverseProxy

local tiger proxy

aggregates all messages
received by any proxy

testObject1

testObject2

«Tiger»
testenvMgr

«Tiger»
test suite

triggers requests and validates
all requests and responses

received via local tiger proxy http(s)

forwarding all messages for validation by tiger steps

http(s)

instantiates the proxies
on start up

http(s)

mesh set up / message flow

http(s)

Figure 6. Tiger Proxy message flow

In the above picture the test object 2 would not be accessible directly by the test suite, thus using
the reverse proxy allows circumventing network restrictions.
The reverse proxy could either be started by the test environment manager or as standalone
process.

tigerProxy:
 proxyId: IBM
 trafficEndpoints:
 - http://another.tiger.proxy:<adminPort>
 # A list of upstream Tiger Proxies. This proxy will try to connect to all given
sources to
 # gather traffic via the STOMP-protocol.
 skipTrafficEndpointsSubscription: false
 # If false then the subscription is tested at the beginning and if any of the
given endpoints are not accessible the
 # server will not boot. (fail fast, fail early)
 # default of skipTrafficEndpointsSubscription is false
 downloadInitialTrafficFromEndpoints: true
 # Should the traffic currently available (cached) in the remote be download upon
initial connection?
 # default of downloadInitialTrafficFromEndpoints is true
 failOnOfflineTrafficEndpoints: false
 # Should the Tiger Proxy fail on startup, when a traffic endpoint is offline?
Default is true.
 # Ignoring this error might lead to an unexpected testing environment!

Please be advised to use the server-port (server.port) here, not the proxy-port
(tigerProxy.proxyPort).
The traffic from routes with disableRbelLogging: true will not show up here.

If you are setting up a Tiger Proxy to run constantly and simply forward traffic to a
testsuite that is booted ad-hoc you might run into performance-problems.
This is due to the Rbel-Logger being a very hungry beast.
To stop Rbel from parsing all message simply add tigerProxy.activateRbelParsing:

53

false.
This will vastly reduce memory and CPU consumption of the application, while
still forwarding logged traffic.

4.6.1. Mesh API

The Tiger Proxies use STOMP a simple/streaming text oriented messaging protocol via web socket to
forward received traffic.
For an external client to receive these traffic data, it must subscribe to the traces topic reachable at
the subscription path /topic/traces.
To do so the client must connect to the traffic endpoint URL of the Tiger Proxy.
This is answered with HTTP status 100 and then redirected to web socket protocol via the same
port.
For each received traffic data pair (request/response) the Tiger Proxy will push a web socket
message to all subscribed clients.

This JSON encoded message consists of:
* UUID string * http request as base64 encoded data * http response as base64 encoded data *
hostname and port of sender (if retrievable, worst case only IP address or empty) * hostname and
port of receiver (if retrievable, worst case only IP address or empty)

{
 "uuid": "UUID string",
 "request": "base64 encoded http request",
 "response": "base64 encoded http response",
 "sender": {
 "hostname": "hostname/ip address of sender",
 "port": portAsInt
 },
 "reveiver": {
 "hostname": "hostname/ip address of receiver",
 "port": portAsInt
 }
}

4.7. Adding notes to messages
To add notes to certain messages, you can add a list of criteria with messages that shall be added to
any message in the rbel log matching the specific criterion.

tigerProxy:
 proxyId: meshProxy2
 notes:
 - message: "This is a note on the HTTP method"
 jexlCriterion: "isRequest && path == '$.method'"
 - message: "Hackers were here..."

54

https://stomp.github.io/

 jexlCriterion: "element.decryptedUsingKeyWithId == 'mySuperSecretKey'"

4.8. Understanding RBelPath
RBeL-Path is a XPath or JSON-Path inspired expression-language enabling the quick traversal of
captured RBeL-Traffic (navigation of the RbelElement-tree).

A simple example:

assertThat(convertedMessage.findRbelPathMembers("$.header"))
 .containsExactly(convertedMessage.getFacetOrFail(RbelHttpMessageFacet.class)
.getHeader());

or

assertThat(convertedMessage.findElement("$.header"))
 .get()
 .isSameAs(convertedMessage.getFacetOrFail(RbelHttpMessageFacet.class).getHeader()
);

(The first example executes the RbelPath and returns a list of all matching element, the second one
returns an Optional containing a single result.
If there are multiple matches an exception is given.)

RBeL-Path provides seamless retrieval of nested members.

Here is an example of HTTP-Message containing a JSON-Body:

55

Figure 7. Rbel-Path expression in a HTTP-Response

The following message contains a JWT (Json Web Token, a structure which contains of a header, a
body and a signature).
In the body there is a claim (essentially a Key/Value pair represented in a JSON-structure) named
nbf which we want to inspect.

Please note that the RBeL-Path expression contains no information about the types in the structure.
This expression would also work if the HTTP-message contained a JSON-Object with the
corresponding path, or an XML-Document.

assertThat(convertedMessage.findRbelPathMembers("$.body.body.nbf"))
 .containsExactly(convertedMessage.getFirst("body").get()
 .getFirst("body").get()
 .getFirst("nbf").get()
 .getFirst("content").get());

(The closing .getFirst("content") in the assertion is due to a fix to make RbelPath in JSON-Context
easier: If the RbelPath ends on a JSON-Value-Node the corresponding content is returned.)

56

Figure 8. Multiple body references

You can also use wildcards to retrieve all members of a certain level:

$.body.[*].nbf

or

57

$.body.*.nbf

Alternatively you can recursively descend and retrieve all members:

$..nbf

and

$.body..nbf

will both return the same elements (maybe amongst other elements).

To use keys containing spaces, escape them via ['foo bar'], like so:

$.body.['foo bar'].key

Please note that the keys in the bracket are URL unescaped.
So to use special characters please URL encode them (Space is a special case since + and ' ' are
allowed, depending on the exact position).

4.8.1. Arrays

To make things easy and consistent, the entries of an array are simply stored as a map with the
index as key.
So the following expression will return the first element of the array:

$.body.array.0

4.8.2. Differentiating between multiple elements

When a key is present multiple times, all elements are returned.
To differentiate between them, you can use the index:

$.body.entry[0]

would give the first element in the following XML:

<body>
 <entry>first</entry>
 <entry>second</entry>
</body>

4.8.3. Alternate keys

To find alternating values, concatenate them using the pipe symbols, like so:
$.body.['foo'|'bar'].key

58

This expression will explore both subtrees to try to find the following nodes
$.body.foo.key and $.body.bar.key.
Please note that only elements that are present are returned.
So if only always one of the two elements is present, only a single element will be returned.

4.8.4. Case-insensitive matching

Sometimes it can be helpful to match keys in a case-insensitive manner.
To achieve this you can use the ~-operator:
$.body.[~'fOO'].key

This will match $.body.foo.key and $.body.FOO.key (and any other case-insensitive match).

To find multiple case-insensitive matches, concatenate them using the pipe symbols, like so:
$.body.['fOO'|'bAR'].key.
With this expression, the following nodes will be found: $.body.foo.key, $.body.FOO.key,
$.body.bar.key and $.body.BAR.key (and any other potential matches).

4.8.5. JEXL expressions

RBeL-Path can be integrated with JEXL-expression, giving a much more powerful and flexible tool
to extract certain element.
This can be done using the syntax from the following example:

$..[?(key=='nbf')]

The expression in the round-brackets is interpreted as JEXL.
The available syntax is described in more detail here or https://commons.apache.org/proper/
commons-jexl/reference/syntax.html

Please note that these Jexl-Expression can not be nested inside each other deeper then one level
(You can write a RbelPath that contains a Jexl-Expression.
And this Jexl-Expression can even contain a RbelPath.
But the inner RbelPath can not contain another Jexl-Expression).

The variables that can be used are listed below:

• element contains the current RBeL-Element

• parent gives direct access to the parent element of the current element.
Is null if not present

• message contains the HTTP-Message under which this element was found.
It contains:

◦ method is the HTTP-Method (or null if it is a response)

◦ url is the request URL (or null if it is a response)

◦ statusCode is the status response code (or null if it is a request)

◦ request is a boolean denoting whether this message is a request

59

https://commons.apache.org/proper/commons-jexl/reference/syntax.html
https://commons.apache.org/proper/commons-jexl/reference/syntax.html

◦ response is a boolean denoting whether this message is a response

◦ header is a map containing all headers (as Map<String, List<String>>)

◦ bodyAsString is the body of the message as a raw string, or null if none given

◦ body is the RbelElement of the message-body, or null if none given

• request is the corresponding HTTP-Request.
If message is a response, then the corresponding Request will be returned.
If message is a request, then the message itself will be returned.

• response is the corresponding HTTP-Response.
If message is a request, then the corresponding Response will be returned.
If message is a response, then the message itself will be returned.

• key is a string containing the key that the current element can be found under in the parent-
element.

• path contains the complete sequence of keys from message to element.

• type is a string containing the class-name of element (eg RbelJsonElement).

• content is a string describing the content of element.
The actual representation depends heavily on the type of element.

Additionally you can always reference the current element (via @.) or the root element (via $.) in
any JEXL-expression.
Lets explain this using an example.

For more detailed information on JEXL expressions please refer to Detailed JEXL-expressions.

4.8.6. Nested RbelPath expressions

Consider the following rbel tree:

60

Figure 9. Nested RBel tree with array

At $.body.body.idp_entity we have an array with potentially multiple entries (here there is only
one, entry 0).
We want to select an entry where the iss-claim matches our expectation.
We can achieve this with using a nested Rbel-Path inside the JEXL-Expression:

$.body.body.idp_entity.[?(@.iss.content=='https://idpsek.dev.gematik.solutions')]

Here the @. references the current element: For each array entry the expression is tested, with @.
always referring to the current entry.
To access elements starting from the root you can use $. like so:

$.body.body.idp_entity.[?(@.iss.content==$.body.body.idp_entity.0.iss.content)]

You can use recursive descent here as well:
$.body.[?(@..content == 'ES256')] would yield $.body.header.
Let’s unpack this expression:

• $.body selects the http body

• . then selects a child (of the http-body, meaning either header, body or signature)

• The JEXL-selector [?(@..content == 'ES256')] is then tested on each of the candidates.

◦ In turn @.. executes a recursive descent, meaning it will select all child nodes individually

61

◦ content selects only the elements which have a key matchin content.
So we end up with all nodes in the respective subtrees that are named content.

◦ The JEXL-expression * == 'ES256'' is then selected for every member of the subtree (so for
the header it will test $.body.header.typ.content, $.body.header.kid.content and
$.body.header.alg.content).
The individual results are then reduced using (so the overall expression matches if there is
ANY matching element)

• Since only one of the subtrees does fulfill the expression only this subtree is returned (and NOT
the element itself, i.e. $.body.header.alg.content)

Please note that since the RbelPath-expressions are executed prior to the JEXL-expression the
negation might yield unexpected results.
Currently it is not recommended to use these. (e.g. $.body.[?(not (@.. == 'ES256'))])

4.8.7. Debugging Rbel-Expressions

To help users create RbelPath-Expressions there is a Debug-Functionality which produces log
message designed to help.
These can be activated by RbelOptions.activateRbelPathDebugging();.
Please note that this is strictly intended for development purposes and will flood the log with quite
a lot of messages.
Act accordingly!

When you want to debug RbelPath in BDD test suites, you can add a tiger.yaml file to your project
root and add the following property (for more details see this chapter):

lib:
 rbelPathDebugging: true

To get a better feel for a RbelElement (whether it being a complete message or just a part) you can
print the tree with the RbelElementTreePrinter.
It brings various options:

RbelElementTreePrinter.builder()
 .rootElement(this) //the target element
 .printKeys(printKeys) // should the keys for every leaf be printed?
 .maximumLevels(100) // only descend this far into the three
 .printContent(true) // should the content of each element be printed?
 .build()
 .execute();

4.9. Running Tiger Proxy as standalone JAR
If you only want to run a Tiger Proxy instance without test environment manager or test library
you may do so (e.g. in certain tracing set-ups).
A spring boot executable JAR is available via maven central.

62

https://repo1.maven.org/maven2/de/gematik/test/tiger-standalone-proxy

Supplying an application.yaml file allows you to configure the standalone proxy just like an
instance started by the test environment manager.
All properties can be used the same way as described in this chapter.
There is however one additional property for the standalone proxy specifically:

flag whether to load all resources (js,css) locally or via CDN/internet.
useful if you have no access to the internet in your environment
localResources: false

4.10. Additional configuration
There are some additional configuration-flags in the Tiger Proxy:

4.10.1. Performance

Below some properties along with their respective default values:

tigerProxy:
 activateRbelParsing: true
 parsingShouldBlockCommunication: false
 activateTrafficLogging: true
 activateRbelParsingFor:
 - epa-vau

activateRbelParsing

Deactivating this flag turns off all Rbel-Analysis of the incoming traffic.
This is a huge deal in terms of memory- and CPU-consumption, but you will lose all benefit of
performing Rbel-Analysis.

activateRbelParsingFor

This option can activate various optional Rbel-Converters.
Currently supported are:

• pop3 for RbelPop3CommandConverter and RbelPop3ResponseConverter

• smtp for RbelSmtpCommandConverter and RbelSmtpResponseConverter

• mime for RbelMimeConverter and RbelEncryptedMailConverter

• asn1 for RbelAsn1Converter

• epa-vau for RbelVauEpaConverter and RbelVauEpaKeyDeriver

• erp-vau for RbelErpVauDecryptionConverter

• epa3-vau for RbelVauEpa3Converter

• sicct for RbelSicctCommandConverter and RbelSicctEnvelopeConverter

• X500 for RbelX500Converter

63

• X509 for RbelX509Converter and RbelX500Converter

• ldap for RbelLdapConverter

• b64gzip for RbelBase64GzipConverter

• OCSP for RbelOcspResponseConverter

These optional converters can also be deactivated at runtime via glue code.
You can deactivate parser during a specific test case.
See the Complete set of steps in validation glue code.

parsingShouldBlockCommunication

If blocking is enabled the Tiger Proxy will only return the response when message parsing is
completed.
This is inadvisable in high-speed scenarios.
It, however, greatly simplifies the test suite (after the communication is concluded the parsed
message appears in the log).
Therefore, the blocking is deactivated by default.
The only exception is the local Tiger Proxy, which WILL block communication until parsing is
completed.
For all Tiger Proxies this default behavior can be changed.

directReverseProxy

To enable the use of the TigerProxy for non-HTTP scenarios you can use the option
directReverseProxy:

tigerProxy:
 directReverseProxy:
 hostname: 127.0.0.1
 port: 3858
 ignoreConnectionErrors: false

This will directly forward any request to the given host.
This is a form of reverseProxy, only also applicable for non-http-traffic.
HTTP traffic will still be forwarded through use of a global reverse proxy.
Other traffic will be directly forwarded, rerouted directly on the TCP layer.
Messages transmitted can still be parsed via RBel.
If the optional flag ignoreConnectionErrors is true, no connection errors will be logged, the default is
false.

4.10.2. activateTrafficLogging

This flag controls whether the Tiger Proxy will log all traffic.
If activated every request and response is noted in the log.
This can lead to a verbose and bloated log.
If you are not interested in the traffic log, but only in the Rbel-Analysis, you can deactivate this flag.
Default is true.

64

4.10.3. rewriteHostHeader

This flag activates the rewriting of the host-header.
If activated the host-header will be rewritten to the target host (only applicable for reverse proxy
routes).
Default is false.

4.10.4. rewriteLocationHeader

This flag activates the rewriting of the location-header for 3xx responses.
If activated the location-header will be modified so the client will still use the proxy to reach the
new location.
Default is true.

4.10.5. maxLoopCounter

By default, the Tiger Proxy will keep count of the number of requests it executes on itself (e.g. when
a request is forwarded to the Tiger Proxy itself).
If this counter exceeds the value of maxLoopCounter the request will be aborted.
The default value is 10 (Meaning after 10 loops the request will end in an error).
Note: This behavior can only be customized for all Tiger Proxies.

4.11. Understanding filtering
The filtering of messages in the tiger proxy consists of three main stages.
These are:

• Traffic filter (trafficEndpointFilterString / readFilter, Determines which messages are accepted
into the tiger proxy)

• Tiger Proxy Log filter (Which messages are displayed in the Tiger Proxy Log?)

• Pagination (Look around in smaller pages of messages)

Lets dive a bit deeper!

4.11.1. Traffic filter

At the core of the Tiger Proxy sits a RbelLogger instance.
Here the messages are parsed and stored.
Three sources feed into the RbelLogger:

• Messages intercepted in the Tiger Proxy

• Messages relayed using a mesh setup

• Messages imported from a file

Messages that are intercepted are automatically stored (the exception being the
tigerProxy.activateForwardAllLogging-property, which can deactivate the logging of traffic not
specifically forwarded via a route).

65

For messages in a mesh setup and from a source file filter expressions can be defined to limit the
messages that are actually stored.
These can be defined using the tigerProxy.trafficEndpointFilterString (for mesh setups) and
tigerProxy.fileSaveInfo.readFilter (for tgr-files) respectively.

When messages pass the filter, partner messages (request/response pairs) are kept intact.
So when you filter for messages that have a return code of 200 the corresponding requests do not
match the filter expression.
They are however kept in memory since the partner, the response in that case, do match.

Filter expressions are JEXL-expressions.

4.11.2. Tiger Proxy Log filter

When you display the messages on the Tiger Proxy Log you have the ability to filter out certain
messages to be displayed exclusively.
The messages, which are filtered out, do still remain stored in the Tiger Proxy.
Consequently, this has no effect if you store a TGR file (be it via the Tiger Proxy Log or the YAML).

The menu on the right side will only show the messages being filtered out to avoid confusion.
However, the messages numbers do reference the order in the main Tiger Proxy store.
This way they are consistent across different Tiger Proxy Log filters (message #10 will always refer
to the same message, regardless of the Tiger Proxy Log filter being applied).

Filter expressions are JEXL-expressions.

4.11.3. Pagination

Finally, pagination is applied in the Tiger Proxy Log.
This comes after the Tiger Proxy Log-Filter has been applied.
So when would filter out every second message via a Tiger Proxy Log-Filter every page would still
contain 20 (or whatever page size you have set) messages.

66

Chapter 5. Tiger Test library
As outlined in the overview section the Tiger test library is one of the three core components of the
Tiger test framework.
Its main goal is to provide extensive support for BDD/Cucumber testing and integrating the local
Tiger Proxy with the test environment manager and the started test environment.

 As of now we do not support multithreaded / parallel test runs.

5.1. Tiger test lib configuration
In the root folder of your test project you may place a tiger.yaml configuration file to customize the
Tiger test library integration and activate / deactivate certain features.

lib:
 # Flag to activate tracing at the Rbel Path Executor.
 # If activated the Executor will dump all evaluation steps of all levels to the
console
 # when traversing through the document tree
 # Deactivated by default
 rbelPathDebugging: false
 # Flag whether the Executor's dump shall be in ANSI color.
 # If you are working on operating systems (Windows) that do not support
 # Ansi color sequences in their console you may deactivate the coloring with this
flag.
 # Activated by default.
 rbelAnsiColors: true
 # Flag whether to start a browser window to display
 # the current steps / banner messages / rbel logs
 # when executing the test suite.
 # This feature can be used to instruct the tester to follow
 # a specific test workflow for manual tests.
 # Deactivated by default
 activateWorkflowUi: false
 # Flag whether to add a curl command details button to
 # SerenityRest Restassured calls
 # in the Serenity BDD report
 addCurlCommandsForRaCallsToReport: true
 # Flag whether to create the RBEL HTML reports during
 # a testsuite run, activated by default
 createRbelHtmlReports: true
 # maximum amount of seconds to wait / pause execution via pop up in the workflow
ui, default is 5 hours.
 pauseExecutionTimeoutSeconds: 18000
 # Customize your Rbel-Logs with your own logo. Must be PNG format.
 # Path should be relative to execution-location
 rbelLogoFilePath: "myLogo.png"
 # If you want to use a fixed port for the workflowUI you can set it here.

67

 workflowUiPort: 8123
 # Flag whether to clear the initial traffic after the environment startup phase
 # activated by default
 clearEnvironmentStartupTraffic: true

flag whether to start the local Tiger Proxy (default) or to omit it completely.
if you have the local Tiger Proxy deactivated you will NOT be able to
validate / log any traffic data from test requests / responses.
localProxyActive: true

section to allow adapting the logging levels of packages/class loggers similar to
spring boot
logging:
 level:
 # activate tracing for a specific class
 de.gematik.test.tiger.testenvmgr.TigerTestEnvMgr: TRACE
 # activate tracing for all classes and subpackages of a package
 de.gematik.test.tiger.proxy: TRACE
 # activate tracing for the local Tiger Proxy. This logger has a special name due
to its importance in the tiger test framework
 localTigerProxy: TRACE

5.2. Cucumber and Hooks
As Tiger focuses on BDD and Cucumber based test suites all the setup and tear down as well as
steps based actions are performed.

That’s why it is mandatory to use the TigerCucumberRunner, which internally registers the plugin
io.cucumber.core.pluginTigerSerenityReporterPlugin to the plugins list.

The LocalProxyRbelMessageListener class initializes a static single RBelMessage listener to collect
all messages received by the local Tiger Proxy and provides those messages via a getter method to
the Tiger filter and validation steps.

At startup of the TigerCucumberRunner the TigerDirector gets called once to initiate the Tiger test
environment manager, the local Tiger Proxy (unless it’s configured to be not active) and optionally
the workflow UI.
It adds a RbelMessage Listener once to the local Tiger proxy and also clears the RbelMessages
queue before each scenario / scenario outline variant.
Utilizing the close integration of SerenityBDD and RestAssured at startup also a Restassured request
filter, which parses the details and adds a curl Command details button to the Serenity BDD report,
is registered.
The curl command shown in that section in the report allows to repeat the performed REST request,
for manual test failure analysis.

After each scenario / data variant all collected RbelMessages are saved as HTML file to the
target/rbellogs folder, and attached to the SerenityBDD report as test evidence.
The current test run state (success/failed rate) is logged to the console.

68

5.3. Using the Cucumber Tiger validation steps
The Tiger validation steps are a set of Cucumber steps that enable you to search for requests and
associated responses matching certain criteria.
All of that without need to write your own code.
Basic knowledge about RBelPath and regular expressions are sufficient.
In order to use these steps you must ensure that the relevant traffic is routed via the local Tiger
Proxy of the test suite or construct a Tiger Proxy mesh set up.

5.3.1. Filtering requests

Core features

• Filter for server, method, path, RBelPath node existing / matching given value in request

• Find first / next / last matching request

• Find absolute last request (no path input needed)

• Find first / next / last request containing a RBelPath node

• Clear all recorded messages

• Specify timeout for filtering request

With the TGR find next request … steps you can validate a complete workflow of requests to exist
in a specific order and validate each of their responses (see next chapter).

5.3.2. Validating responses

Core features

• Assert that the body of the response matches regex

• Assert that a given RBelPath node exists

• Assert that a given RBelPath node matches regex

• Assert that a given RBelPath node does not match regex

• Assert that a given RBelPath node matches a JSON struct using the JSONChecker feature set

• Assert that a given RBelPath node matches an XML struct using the XMLUnit difference
evaluator

Listing 15. Tiger response validation steps example

Feature Tiger validation steps

 Scenario: Example steps

 Given TGR clear recorded messages
 And TGR filter requests based on host "testnode.example.org"
 And TGR filter requests based on method "POST"
 And TGR set request wait timeout to 20 seconds
 When TGR find first request to path "/path/path/blabla" with "$..tag.value.text"
matching "abc.*"

69

 And TGR find first request to path "/path/path/blabla" containing node "$..tag"
 Then TGR current response with attribute "$..answer.result.text" matches "OK.*"
 But TGR current response with attribute "$..answer.reason.text" does not match
"REQUEST.*"
 And TGR current response body matches:
 """
 body content
 """
 And TGR current response at "$..tag" matches as JSON:
 """
 {
 "arr1": [
 "asso", "bsso"
]
 }
 """
 And TGR current response at "$..tag" matches as XML:
 """
 <arr1>
 <entry index="1">asso</entry>
 <entry index="2">bsso</entry>
 </arr1>
 """

 Given TGR find message with "$.pop3Body.mimeHeader.subject" matching ".*test.*"
 Given TGR find next message with "$.pop3Status" matching "-ERR"
 Given TGR find last message with "$.pop3Command" matching "RETR"

5.3.3. Validating requests

Core features

• Assert that the body of the request matches regex

• Assert that a given RBelPath contains node

• Assert that a given RBelPath node matches regex

• Assert that a given RBelPath matches regex

• Assert that a given RBelPath node matches as JSON or XML

• Assert that a given RBelPath node does not match regex

Listing 16. Tiger request validation steps example

Feature Tiger request validation steps

 Background:
 Given TGR clear recorded messages

 Scenario: Test validation Request
 When TGR send PUT request to "http://httpbin/put" with body "{'foo': 'bar'}"
 Then TGR find last request to path ".*"

70

 Then TGR current request body matches:
 """
 {'foo': 'bar'}
 """

 Then TGR current request contains node "$.body.foo"
 Then TGR current request with attribute "$.body.foo" matches "bar"
 Then TGR current request at "$.body" matches:
 """
 {'foo': 'bar'}
 """

 Then TGR current request at "$.body" matches as JSON:
 """
 {
 "foo": "${json-unit.ignore}"
 }
 """

 Then TGR current request with attribute "$.body.foo" does not match "foo"

5.3.4. Regex matching

When comparing values (e.g. in the TGR current response body matches:) generally the algorithms
check for equality and only check for regex matches if they were not equal.

5.3.5. Complete set of steps in validation glue code

Unresolved directive in tigerTestLibrary.adoc - include::./RBelValidatorGlueCommentsOnly.adoc[]

5.4. Modifying RbelObjects (RbelBuilder)

5.4.1. Introduction

Tiger supports modifying JSON, XML and several token formats.
After loading in an object from a string or a file the RbelObject can be modified in multiple ways:

• Changing a primitive value at a certain path

• replacing a primitive node by an object node and vice versa

• adding new nodes and primitive values as child path of an existing path

• adding new nodes to an array/list

After the adjustments the values of the modified RbelElements can be asserted.
The object can be serialised back to a string.
Jexl Expressions are implemented, as for reading a file or for serializing:
'!{rbelObject:serialize("myRbelObject")}'

71

5.4.2. List of all possible Steps

Using the Rbel builder steps

Unresolved directive in tigerTestLibrary.adoc -
include::./RbelBuilderGlueCodeCommentsOnly.adoc[]

5.4.3. Usage examples

Listing 17. Tiger Rbel Builder steps example

Feature: Tiger - RbelBuilder

 Scenario: Replace/change/add certain values/nodes in a rbel object
 # changing primitive value
 Given TGR creates a new Rbel object 'someObjName' with content '{"address":
{"street": "Friedrichstr 136","city": "Berlin","postalCode": "10115"}}'
 Then TGR sets Rbel object 'someObjName' at '$.address.street' to new value
'Hauptstrasse'
 Then TGR asserts '!{rbelObject:serialize("someObjName")}' equals '{"address":
{"street": "Hauptstrasse","city": "Berlin","postalCode": "10115"}}' of type JSON

 # adding primitive value
 Given TGR creates a new Rbel object 'someAddress' with content '{"address":
{"city": "Berlin","postalCode": "10115"}}'
 Then TGR sets Rbel object 'someAddress' at '$.address.street' to new value
'Friedrichstr'
 Then TGR asserts '!{rbelObject:serialize("someAddress")}' equals '{"address":
{"street": "Friedrichstr","city": "Berlin","postalCode": "10115"}}' of type JSON

 # replacing object nodes
 Given TGR creates a new Rbel object 'phoneNumbers' with content '{"phoneNumbers":
[{"type": "home", "number": "030-1234567"},{"type": "mobile", "number": "0176-
123456788"}]}'
 When TGR sets Rbel object 'phoneNumbers' at '$.phoneNumbers.1' to new value
'{"type" : "work", "number" : "0176-199999"}'
 Then TGR asserts '!{rbelObject:serialize("phoneNumbers")}' equals
'{"phoneNumbers": [{"type": "home", "number": "030-1234567"},{"type": "work",
"number": "0176-199999"}]}' of type JSON

 # adding new nodes to an array
 When TGR extends Rbel object 'phoneNumbers' at path '$.phoneNumbers' by a new
entry '{"type": "mobile", "number": "0176-123456788"}'
 Then TGR asserts '!{rbelObject:serialize("phoneNumbers")}' equals
'{"phoneNumbers": [{"type": "home", "number": "030-1234567"}, {"type" : "work",
"number" : "0176-199999"},{"type": "mobile", "number": "0176-123456788"}]}' of type
JSON

72

5.5. Using the HTTP client steps
The Tiger HTTP client steps are a set of Cucumber steps that enable you to perform simple HTTP
requests, with bodies, default and custom headers.

Listing 18. Tiger response validation steps example

Feature: HTTP/HTTPS GlueCode Test feature

 Background:
 Given TGR clear recorded messages

 Scenario: Simple Get Request
 Given TGR clear recorded messages
 When TGR send empty GET request to "http://httpbin/"
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.method')}" matches "GET"
 And TGR assert "!{rbel:currentRequestAsString('$.path')}" matches "\/?"

 Scenario: Get Request to folder
 When TGR send empty GET request to "http://httpbin/get"
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.method')}" matches "GET"
 And TGR assert "!{rbel:currentRequestAsString('$.path')}" matches "\/get\/?"

 Scenario: PUT Request to folder
 When TGR send empty PUT request to "http://httpbin/put"
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.method')}" matches "PUT"
 And TGR assert "!{rbel:currentRequestAsString('$.path')}" matches "\/put\/?"

 Scenario: PUT Request with body to folder
 When TGR send PUT request to "http://httpbin/put" with body "{'hello': 'world!'}"
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.method')}" matches "PUT"
 And TGR assert "!{rbel:currentRequestAsString('$.path')}" matches "\/put\/?"
 And TGR assert "!{rbel:currentRequestAsString('$.body.hello')}" matches "world!"

 Scenario: PUT Request with body from file to folder
 When TGR send PUT request to "http://httpbin/put" with body "!{file('pom.xml')}"
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.method')}" matches "PUT"
 And TGR assert "!{rbel:currentRequestAsString('$.path')}" matches "\/put\/?"
 And TGR assert
"!{rbel:currentRequestAsString('$.body.project.modelVersion.text')}" matches "4.0.0"
 # application/octet-stream is used since no rewriting is done, so unknown/default
MIME-type is assumed
 And TGR assert "!{rbel:currentRequestAsString('$.header.Content-Type')}" matches
"application/octet-stream.*"

 Scenario: DELETE Request without body

73

 When TGR send empty DELETE request to "http://httpbin/delete"
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.method')}" matches "DELETE"
 And TGR assert "!{rbel:currentRequestAsString('$.path')}" matches "\/delete\/?"

 Scenario: Request with custom header
 When TGR send empty GET request to "http://httpbin/get" with headers:
 | foo | bar |
 | schmoo | lar |
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.header.foo')}" matches "bar"
 And TGR assert "!{rbel:currentRequestAsString('$.header.schmoo')}" matches "lar"

 Scenario: Request with default header
 Given TGR set default header "key" to "value"
 When TGR send empty GET request to "http://httpbin/get"
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.header.key')}" matches "value"
 When TGR send POST request to "http://httpbin/post" with body "hello world"
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.header.key')}" matches "value"
 And TGR assert "!{rbel:currentRequestAsString('$.body')}" matches "hello world"

 Scenario: Request with custom and default header, check headers
 Given TGR set default header "key" to "value"
 When TGR send empty GET request to "http://httpbin/get" with headers:
 | foo | bar |
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.header.foo')}" matches "bar"
 And TGR assert "!{rbel:currentRequestAsString('$.header.key')}" matches "value"

 Scenario: Get Request with custom and default header, check body, application type
url encoded
 Given TGR set local variable "configured_state_value" to "some weird $value§"
 Given TGR set local variable "configured_param_name" to "my_cool_param"
 When TGR send GET request to "http://httpbin/get" with:
 | ${configured_param_name} | state | redirect_uri |
 | client_id | ${configured_state_value} | https://my.redirect |
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.path.state.value')}" matches
"${configured_state_value}"
 And TGR assert "!{rbel:currentRequestAsString('$.path.state')}" matches
"state=!{urlEncoded('some weird $value§')}"
 And TGR assert "!{rbel:currentRequestAsString('$.path.my_cool_param')}" matches
"${configured_param_name}=client_id"
 And TGR assert "!{rbel:currentRequestAsString('$.header.Content-Type')}" matches
"application/x-www-form-urlencoded.*"

 Scenario: Post Request with custom and default header, check body, application type
url encoded
 Given TGR set local variable "configured_state_value" to "some weird $value§"

74

 Given TGR set local variable "configured_param_name" to "my_cool_param"
 When TGR send POST request to "http://httpbin/post" with:
 | ${configured_param_name} | state | redirect_uri |
 | client_id | ${configured_state_value} | https://my.redirect |
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.body.state')}" matches
"!{urlEncoded('some weird $value§')}"
 And TGR assert "!{rbel:currentRequestAsString('$.body.my_cool_param')}" matches
"client_id"
 And TGR assert "!{rbel:currentRequestAsString('$.header.Content-Type')}" matches
"application/x-www-form-urlencoded.*"
 And TGR assert "!{rbel:currentRequestAsString('$.body.redirect_uri')}" matches
"!{urlEncoded('https://my.redirect')}"

 Scenario: Request with custom and default header, check application type json
 Given TGR set default header "Content-Type" to "application/json"
 When TGR send POST request to "http://httpbin/post" with:
 | ${configured_param_name} |
 | client_id |
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.header.Content-Type')}" matches
"application/json"

 Scenario Outline: JEXL Rbel Namespace Test
 Given TGR send empty GET request to "http://httpbin/html"
 Then TGR find first request to path "/html"
 Then TGR current response with attribute "$.body.html.body.h1.text" matches
"!{rbel:currentResponseAsString('$.body.html.body.h1.text')}"

 Examples: We use this data only for testing data variant display in workflow ui,
there is no deeper sense in it
txt	txt2	txt3	txt4	txt5
text2	21	31	41	51
text2	22	32	42	52

 Scenario: Simple first test
 Given TGR send empty GET request to "http://httpbin/html"
 Then TGR find first request to path "/html"
 Then TGR current response with attribute "$.body.html.body.h1.text" matches
"Herman Melville - Moby-Dick"

 Scenario: Test Find Last Request
 Given TGR send empty GET request to "http://httpbin/anything?foobar=1"
 Then TGR send empty GET request to "http://httpbin/anything?foobar=2"
 Then TGR find last request to path "/anything"
 Then TGR current response with attribute "$.responseCode" matches "200"
 Then TGR current response with attribute "$.body.url.content.foobar.value" matches
"2"

 Scenario: Test find last request with parameters
 Given TGR send empty GET request to "http://httpbin/anything?foobar=1"

75

 Then TGR send empty GET request to "http://httpbin/anything?foobar=1&xyz=4"
 Then TGR send empty GET request to "http://httpbin/anything?foobar=2"
 Then TGR find last request to path "/anything" with "$.path.foobar.value" matching
"1"
 Then TGR current response with attribute "$.body.url.content.xyz.value" matches
"4"

 Scenario: Test find last request
 Given TGR send empty GET request to "http://httpbin/anything?foobar=1"
 Then TGR send empty GET request to "http://httpbin/anything?foobar=2"
 Then TGR send empty GET request to "http://httpbin/anything?foobar=3"
 Then TGR send empty GET request to "http://httpbin/status/404?other=param"
 Then TGR find the last request
 Then TGR current response with attribute "$.responseCode" matches "404"
 Then TGR assert "!{rbel:currentRequestAsString('$.path.other.value')}" matches
"param"

 Scenario: Get Request to folder and test param is url decoded when access via $.path
and ..value is url decoded
 When TGR send empty GET request to "http://httpbin/get?foo=bar%20and%20schmar"
 Then TGR find last request to path ".*"
 And TGR assert "!{rbel:currentRequestAsString('$.path.foo.value')}" matches "bar
and schmar"
 And TGR assert "!{rbel:currentRequestAsString('$.path.foo')}" matches
"foo=bar%20and%20schmar"

 Scenario: Test deactivate followRedirects
 When TGR disable HttpClient followRedirects configuration
 And TGR send empty GET request to "http://httpbin/redirect-
to?url=!{urlEncoded('http://httpbin/status/200')}"
 Then TGR find the last request
 Then TGR current response with attribute "$.responseCode" matches "302"
 And TGR current response with attribute "$.header.Location" matches
"http://httpbin/status/200"
 When TGR reset HttpClient followRedirects configuration
 And TGR send empty GET request to "http://httpbin/redirect-
to?url=!{urlEncoded('http://httpbin/status/200')}"
 Then TGR find the last request
 Then TGR current response with attribute "$.responseCode" matches "200"

 Scenario: Test check filter POST request
 Given TGR send POST request to "http://httpbin/post" with body "{'foobar': '4'}"
 And TGR send empty GET request to "http://httpbin/anything?foobar=22"
 And TGR filter requests based on method "POST"
 Then TGR find last request to path ".*"
 Then TGR current response with attribute "$.body.data.foobar" matches "4"

 Scenario: Test check filter GET request
 Given TGR send empty GET request to "http://httpbin/anything?foobar=22"
 And TGR send POST request to "http://httpbin/post" with body "{'foobar': '4'}"
 And TGR filter requests based on method "GET"

76

 Then TGR find last request to path ".*"
 Then TGR current response with attribute "$.body.args.foobar.0" matches "22"

 Scenario: Test check filter method reset
 Given TGR reset request method filter
 # check resetting it works even if done twice
 And TGR reset request method filter
 And TGR send empty GET request to "http://httpbin/anything?foobar=22"
 And TGR send POST request to "http://httpbin/post" with body "{'foobar': '4'}"
 Given TGR reset request method filter
 Then TGR find the last request
 Then TGR current response with attribute "$.body.data.foobar" matches "4"

 Scenario: Test check filter POST request
 Given TGR send empty GET request to "http://httpbin/anything?foobar=66"
 When TGR find last request with "$.path.foobar.value" matching "66"
 Then TGR current response with attribute "$.body.args.foobar.0" matches "66"

5.5.1. Complete set of steps in HTTP client glue code

Unresolved directive in tigerTestLibrary.adoc - include::./HttpGlueCodeCommentsOnly.adoc[]

5.5.2. XMLUnit Diff Builder

Using the validation steps TGR current response at {string} matches as XML: or
TGR current response at {string} matches as XML and diff options {string}: you are able to
compare the content of any RbelPath node in the response.
The latter method even allows passing in the following options to the XMLUnit’s DiffBuilder:

• "nocomment" for DiffBuilder::ignoreComments

• "txtignoreempty" for DiffBuilder::ignoreElementContentWhitespace

• "txttrim" for DiffBuilder::ignoreWhitespace

• "txtnormalize" for DiffBuilder::normalizeWhitespace

Per default the comparison algorithm will ignore mismatches in namespace prefixes and URIs.
Comparison is also performed on similarity and not equal content.

For more detailed explanation about the XMLUnit difference evaluator we refer to the online
documentation of the XMLUnit project.

5.5.3. JSONChecker

Using the validation step TGR current response at {string} matches as JSON: you are able to
compare the content of any RbelPath node in the response to the doc string beneath the step, with
the help of the JSONChecker comparison algorithm.

The purpose of JSONChecker class is to compare JSON structures, including checking for the
integrity of the whole RbelPath node, as well as matching values for particular keys.

77

https://github.com/xmlunit/user-guide/wiki/DiffBuilder
https://github.com/xmlunit/user-guide/wiki/DiffBuilder

To make sure all the attributes in your JSON RbelPath structure are present, such features as ${json-
unit.ignore}, $NULL, optional attributes, regular expressions and lenient mode can come in handy.

${json-unit.ignore} is a parameter which allows ignoring certain values in your RbelPath node
while comparing, and the result of such comparison always returns true.
It also works when ${json-unit.ignore} is used in a JSON array or nested JSON object.
This parameter should be placed as a value of a key.
To ignore some attributes in the JSON structure, you can set a boolean value checkExtraAttributes
as false.
In this case if you miss one attribute in your doc string, the comparison will still be equal to true.

To check whether the value for a particular key is null, you can either use null or parameter $NULL
at the place of the value.
Checking whether a nested key is null also works with JSONChecker.

Four underscores "__" before the JSON keys indicate that these keys are optional and will be
checked for the value ONLY if the value exists in the test JSON RBelPath node.
Please note that checking whether a nested key is optional, is not yet possible with JsonChecker.

JSON Arrays are compared in lenient mode, meaning that the order of elements in JSON array
doesn’t matter.

Identifying missing keys is made easy in JSONChecker with the help of parameter $REMOVE.

If you specify the name of the key and then $REMOVE parameter as its value, the comparison will
result in true, if the key is indeed missing and false, if the key is present.
It is worth noting that even if the value of the key is null, the key doesn’t count as missing.

Last but not least, regular expressions, which can be used for matching the whole JSON element, as
well as particular values.
It will be first checked, whether the expected value is equal to the actual one, and only afterwards,
if the actual value matches a regular expression.

It should also be noted, that although JSONChecker can match multilevel JSON objects at a high
level, it is not yet possible to access nested attributes out of the box.
We are working on it :)

Listing 19. Simple adapted example from the IDP test suite

 {
 "alg": "dir",
 "enc": "A256GCM",
 "cty": "$NULL",
 "exp": "[\\d]*",
 "____kid": ".*",
 "dummyentry": "${json-unit.ignore}",
 "dummyarray": ["entry1", "entry2"],
 "dummyarray2": "${json-unit.ignore}"
 }

78

The example above shows three main features of the JSONChecker.

• Value specified as $NULL, meaning this value of this key is equal to null.

• Usage of regular expression (e.g. ".*" and "[\\d]*") to match values.

• Usage of "__" preceeding a json key: This indicates that the entry is optional but if it exists it
must match the given value.

• if a value is specified as "${json-unit.ignore}", there is no check performed at all.
This applies also to objects and arrays as seen in the dummyarray2 entry.

• if we match key dummyEntry2 to the value of $REMOVE, it will return true, because this key
does not exist.

JSON Schema Validation

Using the validation step TGR current response at {string} matches as JSON_SCHEMA: you are able to
assert that the content of any RbelPath node complies with the JSON Schema given in the doc string
beneath the step.

We use the JSON Schema version 2020-12 for validation with the additional feature that we can
have placeholders in the schema that will be replaced with values from the Tiger Global
Configuration.

For example:

TGR current response at "$.body" matches as JSON_SCHEMA:
"""
{
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "age": {
 "type": "integer",
 "minimum": 0
 },
 "email": {
 "type": "string",
 "format": "email"
 },
 "address": {
 "type": "string",
 "const": "${tiger.value.from.config}"
 }
 },
 "required": [
 "name",
 "age"
]

79

}
"""

would validate a message with a JSON body like:

{
 "name": "hello",
 "age": 5,
 "email": "hello@example.com",
 "address": "Friedrichstraße"
}

assuming that the value of ${tiger.value.from.config} set in the Tiger Global Configuration is
Friedrichstraße.

For full details how to specify a JSON Schema, refer to the external resource: Understanding JSON
Schema.
In this list you can find a list of online validators which you can use to test your schema.
Remember to test under JSON Schema version 2020-12.

5.6. Exemplaric scenario Konnektorfarm EAU
validation
The EAU Konnektorfarm scenario is a scenario where customers can use their Primärsystem to test
signing and verifying documents via a set of Konnektoren and that this works interoperable.
For this purpose a phalanx of local Tiger Proxies is set up as reverse proxies for each Konnektor
being hosted at the gematik location.
Any message that is forwarded by any of these proxies is forwarded to an aggregating Tiger Proxy
which in turn forwards all the received messages to the local Tiger Proxy for assertion via the
validation test suite.

80

https://json-schema.org/understanding-json-schema
https://json-schema.org/understanding-json-schema
https://json-schema.org/implementations#validators-web-(online)

Tiger EAU Konnektorfarm test

EAU Konnektorfarm

On site

On si te test environment

Konnektor1

Konnektor2

Konnektor3

«Tiger»
testenvMgr

«Tiger»
validation test suite

validates the received requests
and responses asserting all

mandatory cr iter ia

«External»
primaerSystem

tigerProxy3

tigerProxy2

tigerProxy1 aggregating proxy

aggregates all messages
received by any proxy

localTigerProxy

instantiates the proxies
on start up

forward requests received
locally via localhost:por t
to KonnektorX@gematik

forwards received messages
sends requests as

specified by workflow
to local proxies

Figure 10. Tiger EAU Konnektorfarm test environment

So after starting the validation test suite (and the test environment), the customer / Primärsystem
manufacturer must perform the specified workflow.
The test suite meanwhile will wait for a given order of requests/responses matching specified
criteria to appear.
If all is well, at the end the test report JSON files will be packed into a zip archive and can be
uploaded to the Titus platform for further certification steps.

81

Tiger EAU Konnektorfarm process

Installation of openJDK11 and maven.

Cloning github repo https://github.com/gematik/tiger-eau-proxy.git
into a folder on the customers machine.

starting Tiger validation suite via
mvn -P Test

Tiger test environment manager star ts all
Tiger proxies (reverse, aggregating, local) will be started.

The validation feature file
par t of the github repo will be star ted

waiting for the first request.

The Primärsystem sends requests to the Konnektoren
via the local reverse Tiger proxies.

It follows either manually by human tester or
via test scripts the test work flow

as specified by Gematik.

The test work flow has been completed or aborted

The validation test suite checks
that all requests and responses,

matching the specified work flow
have been received in order

and do match all criteria.

" mvn serenity:aggregate serenity:repor ts
create a local test report"

all steps successful?
yes no

mvn assembly:single
creates a ZIP archive containing

all relevant data, the TITUS platform needs
to perfomr the next steps in the cer tification process

The ZIP archive is uploaded manually
by the Primärsystem manufacturer

to the TITUS platform

The next step in the
certification process can be performed

The local test report contains detailed failure logs

Primärsystem manufacturer adapts his code
to address the issues

next try?

Figure 11. Tiger EAU Konnektorfarm process

82

5.7. Using Tiger test lib helper classes
If you don’t want to use the Tiger test framework but only pick a few helper classes the following
classes might be of interest to you:

 All classes listed here are part of the tiger-common module

For BDD feature files Tiger provides some helper steps too.

5.7.1. Complete set of helper steps in Tiger glue code

Unresolved directive in tigerTestLibrary.adoc - include::./TigerGlueCommentsOnly.adoc[]

5.7.2. Banner

If you want to use large ASCII art style log banners you may find this class very helpful.
Supports ANSI coloring and a set of different fonts.
Furthermore, all banner messages are displayed and highlighted in the Workflow UI For more
details please check the code and its usages in the Tiger test framework.

5.7.3. TigerSerializationUtil

This class supports you in converting String representation of YAML and JSON data to an Java
JSONObject or extract that or other loaded data to Java Maps.
If you are planning to implement test data management or configuration sets, we propose to use
the TigerGlobalConfiguration class described in detail here.

5.7.4. TigerPkiIdentityLoader, TigerPkiIdentity

The loader class allows to easily instantiate PKI identities from given files.
For more details on the format and the supported file types please check this section in the test
environment chapter.

5.7.5. Performing REST calls with Tiger

Tiger is closely integrated with SerenityBDD, which in turn has integrated the RestAssured library,
so if you use the SerenityRest helper class, you will get detailed information about each call inside
the test report.
The Tiger test library configuration also provides a flag to add curl command details to each of
these calls, so that you can easily reproduce the REST call manually in case of test failure analysis.

For more information about REST testing in Tiger/SerenityBDD please check these two documents:

• Serenity

• Serenity Screenplay REST

83

https://serenity-bdd.github.io/docs/guide/user_guide_intro
https://serenity-bdd.github.io/docs/screenplay/screenplay_rest

5.8. Synchronizing BDD scenarios with Polarion test
cases (Gematik only)
Within gematik we maintain test cases via feature files being committed to git repositories.
To keep traceability to the requirements maintained in Polarion we have a Tiger sub project that
synchronizes test cases in Polarion with the scenarios in our feature files.
It is a one way synchronisation, where the master are the feature files.

To use this feature the scenarios need a minimal set of mandatory annotations:

• @TCID:xxx - a unique test case identifier, where 'xxx' matches the value of the custom field
"cfInternalId" in Polarion

• @PRODUKT:p,p,p - reference to the custom field "cfProductType".
You add this annotation above each feature, not each scenario. 'p' is a product, one is mandatory
but it can be a list.

And following optional annotations exist:

• @AFO-ID:xxx - a link to a defined requirement (Anforderung) in Polarion, where 'xxx' matches
the custom field "cfAfoId"

• @AF-ID:xxx - a link to a defined requirement (Anwendungsfall) in Polarion, where 'xxx'
matches the custom field "cfAfId"

• @AK-ID:xxx - a link to a defined requirement (Akzeptanzkriterium) in Polarion, where 'xxx'
matches the work item id

• @PRIO:n - priority number (1-4), default is '1'

• @MODUS:xxx - describes the way of testing, default is 'automatisch'

• @STATUS:xxx - describes the status of the test, default is 'implementiert'

• @TESTFALL:n - describes if the test case is a negative testcase or positive one, default is 'positiv'

• @TESTSTUFE:n - describes the test type, default is '3' (which is E2E-Test)

• @DESCRIPTION - if your test case has a description, and you use this annotation, the description
will be parsed.
If not, the description stays empty and won’t overwrite the one already existing in Polarion

If a scenario is identified that has no test case with a matching TCID, it will be created automatically
in the sync run.
Background blocks will be merged to each scenario before exporting its steps to Polarion.

For more details on how to perform the synchronisation, all choices for the annotations and how to
upload generated test run reports to Polarion and Aurora, please check the README.md in the
PolarionToolbox project on the Gematik GitLab.

5.9. JUnit test report when using Scenario Outlines
When using Scenario Outlines in your feature files, the JUnit test report will show each example

84

that has run in the scenario outline as a single test case.
To create a name for each example that is referencing the scenario outline, the system property
cucumber.junit-platform.naming-strategy.short.example-name is set to the value pickle in case it is
not set by the environment.

85

Chapter 6. Tiger Configuration
Configuration is an integral part of testing.
To make this task easier for you and to make configuration the various parts of the system as easy
as possible Tiger has a central configuration store: TigerGlobalConfiguration.
It combines properties from multiple source and feeds into various parts of the system.

TigerGlobalConfiguration

YAML sources Environment Variables System Properties CLI Parameters Manual configuration

TigerGlobalConfiguration.readString("tiger.nested.property") TigerGlobalConfiguration.instantiateConfigurationBean(MyBean.class, "foo.bar")

Figure 12. The TigerGlobalConfiguration with inlets and outlets

This allows a vastly simplified retrieval and configuration of nearly all aspects of the system.
It is therefore recommended reusing this system for your own testsuite as well.

6.1. Inlets
The following inlets are considered in the TigerGlobalConfiguration (ordered from most to least
important, meaning if a property occurs in multiple sources the one at the top is considered first):

• Exports from ScopedExecutor

• Thread-local exports

• Exports done in glue code

• Exports during runtime (TigerGlobalConfiguration.putValue())

• Command-line properties

• System-Properties (System.setProperty)

• Environment-Variables (export "FOO_BAR" = 42)

• Full-text YAML file (value of tiger.yaml configuration key)

• Additional YAML-Files (additionalConfigurationFiles:)

• Host YAML-File (tiger-<hostname>.yaml)

• Main YAML-File (tiger.yaml)

• Interne Defaults

86

6.2. Key-translation
To easily convert between the multiple sources the TigerGlobalConfiguration offers key-translation:

tiger.foo.bar is equal to TIGER_FOO_BAR is equal to tIgER.fOO.BaR

• When the key consists only of letters and underscores then the underscores are converted to
points.

• Names are compared without considering the case.

• Keys that contain '{', '}' or '|' are forbidden.
To allow a clean startup on systems that have values like this configured the given characters
are replaced by '_'.

6.3. Thread-based configuration
To enable execution of multiple tests simultaneously some data has to be stored in a thread-based
manner (the first step could for example store the result of a request in a variable, the second step
could read it from that variable).

To enable this simply reference the Thread-context when storing a variable:

TigerGlobalConfiguration.putValue("foo.value", "bar", ConfigurationFileType
.THREAD_CONTEXT);

When retrieving the variable you could simply ask for foo.value: Only when you are in the thread
that stored this variable you will find it again.

6.4. Placeholders
The TigerGlobalConfiguration supports the use of placeholders.
Say for example you have a test-environment with two servers, "A" and "B".
For the server "A" you have two choices: Either a real URL in the internet or a locally booted server.
The use can choose which to activate by setting "active" of the server to use.
The server "B" should now use the activated server, without having to set it manually while
booting.

You could achieve this by exporting the URL (servers.myServer.exports) and referencing it in an
argument which is passed into server "B" (serverAUrl=${serverA.url}.
The first part here before the equal is the name of the environment variable passed into server "B"
while booting, the second part behind the equal is the name of the property. compare this to the
exports in the two serverA-options):

Listing 20. Configuring using placeholders and exports

servers:
 serverAInternet:
 active: true

87

 type: externalUrl
 source:
 - https://my.real.server/api
 exports:
The string SERVERA_URL is split internally into SERVERA and URL, which are then
considered
as lowercase keys
 - SERVERA_URL=https://my.real.server/api
 serverALocal:
 active: false
 type: externalUrl
 source:
 - https://localhost:8080/api
 exports:
 - SERVERA_URL=https://localhost:8080/api
 serverB:
 type: externalJar
 source:
 - http://nexus/download/server.jar
 healthcheckUrl: http://127.0.0.1:19307
 externalJarOptions:
 arguments:
The second part is the placeholder which will be resolved using the internal value
store.
The string "serverA.url" is split into "serverA" and "url", again considered as
lowercase,
which then matches to "SERVERA_URL",
 - --serverAUrl=${serverA.url}

Placeholders which can not be resolved will not lead to errors but rather they will
simply not be replaced.

6.5. RbelPath-style retrieval
The placeholders also support RbelPath-style expressions to allow for more flexible, dynamic
retrieval of properties.
Consider for example the following YAML:

myMap:
 anotherLevel:
 key1:
 value: foobar
 target: schmoo
 key2:
 value: xmas
 target: blublub
 hidden:
 treasure:

88

 buried: deep

To retrieve values from this map you can use the following expressions:

• ${myMap.anotherLevel.[?(@.value=='foobar')].target} will resolve to "schmoo", retrieving the
node myMap.anotherLevel.key.target.

• The same value can be retrieved via ${..[?(@.target=='schmoo')].target}.
This expression uses the recursive descent mechanic of RbelPath.

• ${..buried} will resolve to "deep", retrieving the node myMap.hidden.treasure.buried.

6.6. Fallback values
Sometimes a default value is desired when a given key is not set.
To define such a value, just use the pipe (|) after the key, like so:

${foo.bar|orThisValue}

This will first test for the presence of "foo.bar" as a configuration key.
If that key is not found, the fallback value "orThisValue" will be used.

6.7. Localized configuration
It is possible to set a local variable in the TigerGlobalConfiguration which will only be active for the
duration of the test case execution.

This can be achieved with the glue code step:

TGR setze lokale Variable {tigerResolvedString} auf {tigerResolvedString}
TGR set local variable {tigerResolvedString} to {tigerResolvedString}

The variables will be removed from the TigerGlobalConfiguration after the test case execution.
Bear in mind that this does not work with threading: The values are added to the global store and
are removed automatically, but will still be visible by any parallel thread that attempts to read the
TigerGlobalConfiguration.

It is also possible to set a variable that is local to the feature file where it is defined.
With the glue code step:

TGR setze lokale Feature Variable {tigerResolvedString} auf {tigerResolvedString}
TGR set local feature variable {tigerResolvedString} to {tigerResolvedString}

a variable can be set that will be removed from the TigerGlobalConfiguration when the execution
of the feature file is finished.

89

6.8. Examples
Some examples to clarify:

6.8.1. Example 1

Say you have an environment configured in your testenv.yaml.
You want the Tiger Proxy to forward traffic on one route to your backend-server.
This will normally be a local server, but on the build-server you want to address another host.
You can simply set an environment variable to do the job for you.
Below are the relevant snippets:

Listing 21. tiger.yaml with the Tiger Proxy routing everything to the local server

tigerProxy:
 proxyRoutes:
 - from: /
 to: http://127.0.0.1:8080

In the buildserver you can now simply overwrite the "to"-part of this route like so:

export TIGERPROXY_PROXYROUTES_0_TO = "http://real.server"

6.8.2. Example 2

In the above example let’s say you only want to customize the port.
This can be done by using placeholders:

Listing 22. tiger.yaml with the Tiger Proxy routing everything to the local server

tigerProxy:
 proxyRoutes:
 - from: /
 to: http://127.0.0.1:${backend.server.port}

This time we don’t overwrite the complete to-url but only the port like so:

export BACKEND_SERVER_PORT = "8080"

6.8.3. Example 3

Now we want to assert that the reply coming from the server has the correct backend-url in the
XML that is returned to the sender.
To do this we have to reference the configured URL from above, since the value could be different
on every execution.
We can solve this using placeholders:

90

Listing 23. The testsuite

 TGR current response with attribute "$.body.ReplyStructure.Header.Sender.url"
matches "http://127.0.0.1:${backend.server.port}"

The glue-code in Tiger automatically resolves the placeholders.

6.9. Pre-Defined values
Tiger adds some pre-defined values to make your life easier configuring the environment.
Currently, these are:

• free.port.0 - free.port.255: Free ports that are randomly determined at startup but stay fixed
during the execution.
This enables side effect free execution of the testsuite.

6.10. Inline JEXL
In addition to the ${foo.bar} syntax allowing the retrieval of configuration values there exists the
!{'foo' != 'bar'} syntax allowing the execution of JEXL expressions.
The JEXL-syntax is described in more depth here: https://commons.apache.org/proper/commons-
jexl/reference/syntax.html

To give you more power and flexibility when creating inline-JEXL-expression you can access
several namespaces from inside the JEXL expression.
You will find two predefined namespaces and also the ability to add your own, allowing further
customization.

6.10.1. The default namespace

The default-namespace of the inline JEXL-expression carries the following functions:

• file(<filename>) loads the given file and returns it as a UTF-8 parsed string.

• sha256 returns the HEX-encoded SHA256-value of the given string.

• sha256Base64 returns the Base64-encoded SHA256-value of the given string.

• sha512 returns the HEX-encoded SHA512-value of the given string.

• sha512Base64 returns the Base64-encoded SHA512-value of the given string.

• md5 returns the HEX-encoded MD5-value of the given string.

• md5Base64 returns the Base64-encoded MD5-value of the given string.

• base64Encode returns the Base64-Encoding of the given string (non-url safe).

• base64UrlEncode returns the Base64-URL-Encoding of the given string.

• base64Decode decodes the given Base64-String (URL and non-url) and converts it into a UTF-8
string.

91

https://commons.apache.org/proper/commons-jexl/reference/syntax.html
https://commons.apache.org/proper/commons-jexl/reference/syntax.html

An example of a function-invocation in the default namespace:

!{file('src/test/resources/testMessage.json')}

This will load the given file and replace any placeholders found in it.

6.10.2. The rbel namespace

To give you direct access to the messages sent please use the rbel-namespace:

• currentResponse returns the current response, optionally filtered by a given Rbel-path

• currentResponseAsString returns the string-representation of the current response, optionally
filtered by a given Rbel-path

• currentRequest returns the current request, optionally filtered by a given Rbel-path

• currentRequestAsString returns the string-representation of the current request, optionally
filtered by a given Rbel-path

This can be done like so

!{rbel:currentResponseAsString('$.body.html.head.link.href')}

This will immediately return the href-attribute of the link in question as a string.

6.10.3. Adding custom namespaces

You can easily register additional namespaces by calling
TigerJexlExecutor.registerAdditionalNamespace(<namespace-prefix>, <namespace class or object).

6.11. Configuration Editor
The configuration editor allows to view and edit the tiger configuration during a test run.
The editor is part of the Workflow UI and can be opened by clicking the gears icon in the sidebar
(Figure 13).

92

Figure 13. Open the configuration editor by clicking the gears icon in the sidebar.

The configuration editor displays a table where you can view the current configuration properties
loaded in the Tiger global configuration (Figure 14).
This includes properties from all inlet sources.
If a property is defined multiple times in different sources, only the one with higher importance is
displayed.

Figure 14. The Tiger global configuration editor

The editor allows sorting and filtering each column so that you can easily find a specific property
(Figure 15).

93

Given that the Tiger global configuration includes many environment variables and system
properties which are not directly relevant to Tiger, the filtering functionally proves to be especially
useful.

Figure 15. Example of filtering the column key by the text 'tgr'

The values of existing configuration properties can be edited by double-clicking the value cells.
This opens an input field where you can input a new value (Figure 16).

Figure 16. Double clicking a value cell opens the cell editor.

Additionally, you can remove existing configuration properties by clicking the delete button (Figure
17)

94

Figure 17. Clicking the delete button removes the property from the Tiger global configuration.

Editing or removing configuration properties will not affect already ran tests.
If you want to use edited properties in a specific test, then you should pause the
test before editing the configuration.
In Workflow UI you can see how to use custom steps to pause the test suite.

Some variables in the table have multiline values, causing the text to appear truncated initially.
These cells are equipped with an expand icon (Figure 18), indicating the availability of additional
content.

Figure 18. Clicking on the expand icon reveals the full multiline content.

95

Clicking the expand icon uncover the complete multiline content, ensuring it is fully visible within
the cell.

Figure 19. Click the expand icon to view the full multiline content.

To hide the multiline content and return to a truncated view, simply click on the collapse icon.
This action collapses the multiline content, returning the text to its truncated state.

96

Chapter 7. Tiger User interfaces

7.1. Workflow UI
The Workflow UI is a feature for a better user experience during the test run of feature file(s).

If activated via the tiger.yaml configuration file, the Workflow UI will be opened in the current
browser window during the test run and shows the status and logs of the servers as well as the
results and request calls of the scenarios and feature files during the test run.
If no browser is open at the time a new instance will be launched.

Figure 20. Workflow UI

The image above shows the initial startup of the Workflow UI.
The Workflow UI is divided into three sections: the status bar, the main window with test execution
and server logs and the Rbel log details (a slimmed down version of the WebUI).

7.1.1. Status Bar

The section on the left is called status bar as shown in the picture below.

97

Figure 21. the status bar is situated on the left

When the user clicks on the tigers head on the top left the status bar slides open as shown below.

Figure 22. open status bar

Figure 23. status bar buttons: abort, pause, configuration editor

The first button stops the test execution and terminates the servers.

98

As seen in the following screenshot the background color of the status bar changed to red and at a
banner is shown that tells the user that the test execution has been aborted.
Once the Workflow UI has quit, searches and filtering on the Rbel log details as well as on the Web
UI are no longer possible.

Figure 24. test execution has stopped on user request

By clicking on the second button the test execution pauses.
The background color of the status bar and the pause button change to indicate the pause as shown
in the following picture.

Figure 25. test execution is paused

99

The test execution will be resumed once the user clicks on the green play button.
The third button opens the Configuration Editor which is explained in detail in this section.

Below the buttons the status box shows how many feature files and how many scenarios were
executed and also the amount of failed tests are shown.

Figure 26. status box

In the feature box below each scenario name is displayed.
The names are linked to the test and when the user clicks on the scenario the test is shown in the
test execution on the main section.
The green icon in front of the name indicates a passed scenario, the red exclamation mark indicates
a failed scenario.
The numbers in square brackets indicate that this is part of an outline scenario, meaning a test
scenario that is run multiple times with different test data.

100

Figure 27. feature box

101

Figure 28. server box

102

The server box above displays the configured servers, its status (e.g. STARTING, RUNNING,
STOPPED) and some outputs of its logs.
When the icon color before the server name is green then the server is up and running correctly.

Below the server box the version number and the build date of the currently used tiger release is
displayed.

Figure 29. tiger version and build

The status bar can be minimized by clicking on the double arrow or by clicking on any of the icons
in the status bar (e.g. status box icon, feature box icon, server box icon, tiger head icon).

7.1.2. Main window

The main window of the Workflow UI has two sections: the test execution and the server logs which
can be selected by the two buttons on top of the Workflow UI as seen in the picture below.

Server logs

By clicking on the server logs button on top of the main window the user can have a look at the log
files of each server.
There the user can use several filter options to search in the log files.
There are the following server buttons: you can see all logs of all servers, or only the logs of one or
more servers by clicking on the corresponding buttons.
The user can also search via text input after a certain text phrase.
It is also possible to distinguish between the different log levels.
In the picture below only the httpbin server is selected.

103

Figure 30. Server Logs with httpbin server and all log levels selected

Test execution

In the test execution tab the user sees the executed features and their scenarios as well as their
execution status.
A test can be either passed or failed.
In the example below the scenario has passed but the feature itself has failed, which means that at
least one of the scenarios of the feature has failed.

Figure 31. Test execution

104

Figure 32. execution status for scenarios and features

Beside the status at the end of the feature/scenario name the user can also see the status at the icon
before the name.
During text execution or while pausing the Workflow UI there is a third status the feature/scenario
can have which is "pending".
The icon before the name would be a spinner icon to indicate that status.

TGR banner step will be displayed at the bottom of the Workflow UI and will stay there till the next
banner step replaces the message.
This way you can instruct manual testers to follow a specified test workflow.
This feature is used in the EAU Konnektorfarm validation test suite to guide the Primärsystem
manufacturers through the interoperability combinations of signing/verifying documents against
all Konnektors available.

Additionally, a test scenario can be replayed.
When clicking the replay button next to the scenario name, the scenario will be rerun again.
If placeholder variables were modified with the configuration editor, the new values will be used
when replaying the scenario.

Figure 33. The replay button

Alternatively, a scenario can be replayed by clicking the small replay button in the feature box in
the sidebar.

105

Figure 34. Small replay buttons in the sidebar

The communication requests that are called during the step execution are displayed beneath the
step that initiated the request.
When the user clicks on the light blue rectangle with the number (whereas uneven numbers are
requests, even number are responses) of the request then the Rbel Log view opens on the right
hand side of the Workflow UI as shown on the screenshot below.

106

Figure 35. Rbel Log Details

In the Rbel Log Details view the RbelMessages are displayed that are also saved as HTML files as
described in the Cucumber and Hooks section.
Next to the headline there is a link to the WebUI (aka Tiger Proxy UI) which opens the WebUI in a
new tab as shown in the picture below.

Figure 36. Link to open the Tiger Proxy Log

The Rbel Log Details view is described in the WebUI section as it is a slimmed down version of the
WebUI.
In order to increase/decrease the width of the Rbel Log Details view the user can drag the border

107

between the main window and the Rbel Log Details view.
The Rbel Log Details can be minimized by clicking on the double arrow on the top left of the Rbel
Log Details section.

7.1.3. Traffic Visualization

An additional feature of the Workflow UI is the traffic visualization.
This feature allows to visualize the traffic between the servers under test in a sequence diagram.
The feature needs to be explicitly enabled in the tiger.yaml configuration file.

lib:
 trafficVisualization: true

This will enable a third section in the main window of the Workflow UI where a sequence diagram
is displayed.

Figure 37. Traffic Visualization

The sequence diagram shows the messages that were exchanged between the servers under test.
By clicking on a message in the sequence diagram, the corresponding Rbel Log Details will be
displayed in the Rbel Log Details section.

The traffic visualization currently supports the following server types: externalJar, externalUrl,
zion, docker and compose.

For messages to show up in the sequence diagram they need to be routed through the Tiger Proxy.
This is the case for all the messages originating in the local tiger client and their responses.
If there are additional messages originating on one the servers under test, they need to be routed
through the Tiger Proxy as well.
In Zion servers this is automatically configured.

108

For external jars this can be achieved by configuring the servers with the following VM options:

externalJarOptions:
 options:
 - -Dhttp.proxyHost=127.0.0.1
 - -Dhttp.proxyPort=${tiger.tigerProxy.proxyPort}

For the server types docker and compose, we do not yet support the visualization of messages
originating on a client port of these servers.

7.2. Postpone start of test scenarios
It is possible to configure the Workflow UI to not start all tests automatically at startup.
When setting the following configuration option in the tiger.yaml:

lib:
 runTestsOnStart: false # default is true

the tests will only be discovered and displayed in the Workflow UI.
The user can then choose which test scenario he/she wants to execute.
This can be done by clicking the play buttons in either the Test Execution pane or in the Status Bar.

Figure 38. Play Buttons

7.3. Standalone Tiger Proxy Log
To watch the recorded messages and to be able to analyze issues at test run time already you can
visit the Tiger Proxy web user interface at:

109

http://127.0.0.1:${SERVERPORT}/webui

With ADMINPORT being the configured server port of the Tiger Proxy.

When the user works with the Workflow UI the Tiger Proxy UI can be opened via a link in the Rbel
Log Details view in a new browser tab.

7.3.1. Overview

The following screenshot shows the WebUI.
On the left side the request/response pairs are displayed.
The user can see the request type and the error code of the response as well as the timestamp of the
request.

Figure 39. Tiger Proxy Log

On the top right the tiger version and the build date are displayed.
In the middle the full request and response messages are shown with detailed header and body.

Filter Modal

When a lot of messages are recorded, it is sometimes hard to find the message you are looking for.
Therefore, the user can filter the messages with a Rbel-Path or a regex using either the filter modal
as shown in the picture below or the JEXL Debugging modal described here.

110

Figure 40. Filter Managment

RBel-Path/JEXL Debugging Modal

When the user wants to inspect a Rbel-Path or have a look at some JEXL expressions, the user can
click on the corresponding button in the top right corner of the request or the response that is
highlighted in the following screenshot.

Figure 41. Access RBel-Path/JEXL Debugging

The picture below shows the RBel-Path tab.
The user can execute the RBel-Path on the request or the response and the result is displayed in the

111

bottom part of the modal.

Figure 42. RBel-Path

For more information in the Rbel-Path check out this section.

The picture below shows the JEXL Debugging tab.
The user can execute the JEXL expression on the request or the response and the result is displayed
in the bottom part of the modal.
Further information on JEXL expressions can be found in Explanation of JEXL Expressions.

Figure 43. JEXL Debugging

112

When the user wants to filter the messages with a JEXL expression, the user can click on the "Use as
filter" button in the modal.

Behind the settings icon are some modals that are explained in more detail in the following
sections.

Settings

Behind the settings icon several actions can be triggered:

• Message Options … has two possibilities (hide headers and hide details) which collapses either
all headers (request headers as well as response headers) or all the detailed information of the
requests and responses

• Export … allows you to export all or the currently filtered received messages as an HTML page
or as a machine-readable tgr file.

• Configure Routes … allows you to modify and add the routes configured on this Tiger Proxy

• Reset Messages … allows you to reset all the messages and import a previously stored traffic
file.

• Quit Proxy … quits the Tiger Proxy.

Routing Modal

The user can add/delete routes in the routing modal which is shown in the following screenshot.

Figure 44. Route Managment

Message Content

The user can have a look at the request/response message content of the header, body or both by
clicking on the corresponding button in the top right corner of the request or the response that is

113

highlighted in the following screenshot.

Figure 45. Buttons to show message content

The picture below shows the content of the whole response.

Figure 46. Example of the content of a response

Switching between request/response

Since the order in the list is based upon the reception of the corresponding message it can be hard
to find the corresponding request or response to a given message.
To make this easier the user can switch between the request and the response by clicking on the

114

corresponding button in the top right corner of the request or the response that is highlighted in
the following screenshot.

Figure 47. Buttons to switch between request and response

7.4. Explanation of JEXL Expressions
In the Workflow UI and in the WebUI you can inspect the requests and response messages.
For that you can use RbelPath and/or JEXL expressions. This section should give you a brief review
on the JEXL expressions.

Important to know is that an JEXL expression is usually a "condition1 operator condition2"
expression which is compared.
Therefor the following operators could be used.

7.4.1. Operators

Operato
r

Description

and |
&&

cond1 and cond2 and cond1 && cond2 are equivalent

or | || cond1 or cond2 and cond1 || cond2 are equivalent

not | ! The ! operator can be used as well as the word not, e.g. !cond1 and not cond1 are
equivalent

== Equality, e.g. cond1 == cond2

null is only ever equal to null, that means when you compare null to a non-null value,
the result is false.

115

Operato
r

Description

!= Inequality

> Greater than

< Less than

>= Greater than or equal

⇐ Less than ot equal

=~ In or match, can be used to check that a string matches a regular expression.
For example "abcdef" =~ "abc.* returns true. It also checks whether any collection, set or
map contains a value or not;
in that case, it behaves as an "in" operator. "a" =~ ["a","b","c","d","e",f"] returns true.

!~ Not in or not-match, can be used to check that a string does not match a regular
expression.
For example "abcdef" !~ "abc.* returns false. It also checks whether any collection, set or
map does not contain a value.
"a" !~ ["a","b","c","d","e",f"] returns false.

=^ startsWith, for example "abcdef" =^ "abc" returns true

!^ startsNotWith, "abcdef" !^ "abc" returns false

=$ endsWith, for example "abcdef" =$ "def" returns true

!$ endsNotWith, for example "abcdef" !$ "def" returns false

Empty The unary empty operator behaves like the corresponding function empty().

size The unary size operator behaves like the corresponding function size().

Figure 48. Rbel Path Expression

116

7.4.2. Access on Array, Lists and Maps

To access maps in JEXL/RbelPath the point notations is used. In case of lists use the number of the
list entry you want to access, starting with 0, 1, 2 and so on.

Figure 49. The access of the elements of a list is done with the number, starting with 0. For maps the point
notation is used.

7.4.3. Access JEXL contexts

There are predefined JEXL contexts which can be used for the query, for example isRequest,
isResponse, charset, content or also more
complex contexts like response.statuscode, request.url, message.method etc.
For more details check the InlineJexlToolbox

Figure 50. Use single quotes when using JEXL contexts with a hyphen.

7.4.4. More Examples

message.headers.'content-length'.0 == "0" → Use single quotes when using JEXL contexts with a
hyphen.

@.body.0.name.content =^ "Jasmin" → check whether the content starts with "Jasmin"

$.body.recordId == "X12349035" → checks for the recordId of a decrypted EPA-VAU-message

$.header.Content-Type == "application/json" → check if the message is a JSON-message

request.method == "GET" → check if request is da GET request

charset =~ "UTF-.*" → check the charset with a regex

empty(response.url)==true oder auch empty(response.url) → url is not set

$.body.recordId == "Y243631459" && charset == "UTF-8" → combines the two criterions

117

7.4.5. POST Form / GET parameters

When accessing parameters POST and GET are handled differently.
POST form data requests contain the data as Url encoded query string in the body of the request.
There is no easy way to decode this data generically within Rbel/JEXL.
To help you ease the situation for POST we do have a helper JEXL inline method:
!{urlEncoded('value')}
To access POST form data you may use $.body.paramname which will return the URL encoded value.

For GET requests you have two options:

• $.path.paramname which will return the string "paramaname=URLENCODED_VALUE" or

• $.path.paramname.value which will return the URL decoded original value.

For further help on JEXL please check out the official website (https://commons.apache.org/proper/
commons-jexl).

118

https://commons.apache.org/proper/commons-jexl
https://commons.apache.org/proper/commons-jexl

Chapter 8. Tiger Zion
Tiger Zion is a server that is highly customizable.
It serves as a stand-in, an interactive, Zero-Line mock for more complicated servers.

It can be stateful, do backend-requests, give conditional answers (allowing for error cases, edge
cases).
It can return JSON, XML, JWT, JWE and many more, nest these formats into each other.
The underlying templating language supports loops and conditions.
It can be used both as a standalone server or as a server directly inside of tiger.

In order to use zion, make sure that you add the tiger-zion dependency in the most recent version.

 <dependency>
 <groupId>de.gematik.test</groupId>
 <artifactId>tiger-zion</artifactId>
 <version>${tiger.version}</version>
 </dependency>

8.1. Simple canned response
To start lets write a server that has one endpoint: Return a simple JSON.
We do this as part of a tiger testsuite.

Listing 24. tiger.yaml

servers:
 zionServer:
 type: zion
 zionConfiguration:
 # define the server port.
 # In a real setup you would leave this empty (then a random port will be used)
 serverPort: 8080
 mockResponses:
 # a map with all the responses
 helloWorld:
 # the name is arbitrary. It can be used to alter the response later on
 requestCriterions:
 # This is a list of JEXL expressions. Only when all expressions are met is
this response considered
 - message.method == 'GET'
 - message.path == '/helloWorld'
 response:
 statusCode: 200
 body: '{"Hello":"World"}'

This will give us:

119

$ curl localhost:8080/helloWorld
{"Hello": "World"}

8.2. Looping (tgrFor)
Let’s now make this a bit more interactive: Return a map of all given HTTP headers.
And please return it as an XML!

Because XMLs are large and get complicated easily we don’t want to write it directly inside the
tiger.yaml.
So we reference an external file, where we do the heavy lifting:

Listing 25. tiger.yaml

servers:
 zionServer:
 type: zion
 zionConfiguration:
 serverPort: 8080
 mockResponses:
 helloWorld:
 requestCriterions:
 - message.method == 'GET'
 - message.path == '/helloWorld'
 response:
 statusCode: 200
 bodyFile: complicatedResponse.xml

Listing 26. complicatedResponse.xml

<?xml version="1.0" encoding="utf-8" ?>
<requestDescription>
 <headers>
 <header>
 <tgrFor>header : request.headers.entrySet()</tgrFor>
 ${header}
 </header>
 </headers>
</requestDescription>

Let’s try it out:

$ curl localhost:8080/helloWorld
<?xml version="1.0" encoding="UTF-8"?>

<requestDescription>
 <url>http://localhost:8080/helloWorld</url>

120

 <path>/helloWorld</path>
 <headers>
 <header>host=[localhost:8080]</header>
 <header>accept=[*/*]</header>
 <header>user-agent=[curl/7.88.1]</header>
 </headers>
</requestDescription>

Here you see a tgrFor construct.
As the name leads on, it is used for looped rendering.
It reside WITHIN the element which needs to be considered, which is a bit different compared to
other templating languages.
It just has to be beneath the element in the logical tree of the document.
So the tgrFor can be a tag within <header>, but it also could have been an attribute.
It can also be used in a JSON-fragment: The tgrFor then has to be a field in the object that you want
looped.

The tgrFor must consist of three parts: The name of the loop-variable (here: header), followed by
colon and then the loop expression to be evaluated.
The loop expression must yield a Java-Collection as a result.
Some examples:

1..42

{ 'one' , 2, 'more'}

{ 'one' : 1}.entrySet()

The loop-variable will be set for every iteration in the TigerConfiguration.
So to access it directly, use ${myLoopVariable}.
You can then also combine the loop-variable with JEXL like so:

Listing 27. complicatedResponse.xml

<?xml version="1.0" encoding="utf-8" ?>
<requestDescription>
 <headers>
 <header>
 <tgrFor>header : {1,2,3}</tgrFor>
 ${header} and !{ ${header} + 1}
 </header>
 </headers>
</requestDescription>

will lead to

121

<?xml version="1.0" encoding="UTF-8"?>
<requestDescription>
 <headers>
 <header>1 and 2</header>
 <header>2 and 3</header>
 <header>3 and 4</header>
 </headers>
</requestDescription>

8.3. Conditional rendering (tgrIf)
To make the presence of elements conditional you can use the tgrIf statement.
Consider the following example:

Listing 28. complicatedResponse.xml

<?xml version="1.0" encoding="utf-8" ?>
<requestDescription>
 <checkIf tgrIf="1 < 5" logic="still applies" />
</requestDescription>

This will give us

<?xml version="1.0" encoding="UTF-8"?>

<requestDescription>
 <checkIf logic="still applies"></checkIf>
</requestDescription>

The tgrIf statement just consist of one single JEXL expression.
The result must be of type boolean.
Please note that the tgrIf-statement, like the tgrFor, has to be beneath the target element in the
document tree.
This can be done via an attribute in XML, but it can also be done using a tag:

Listing 29. complicatedResponse.xml

<?xml version="1.0" encoding="utf-8" ?>
<requestDescription>
 <checkIf logic="still applies">
 <tgrIf>1 < 5</tgrIf>
 </checkIf>
</requestDescription>

Here are some examples for other possible criteria:

122

$.header.connection == 'Keep-Alive'

This will only be true if the matching header is present.

$.header.host =~ 'local.*'

You can also use the more complex JEXL operators (here =~, comparing using a regex).

8.4. Backend request
To simulate complex interactions you can execute backend requests.
The following example should clarify the mechanism:

We want measure the length of the response by google to a query:

Listing 30. tiger.yaml

servers:
 zionServer:
 type: zion
 zionConfiguration:
 serverPort: 8080
 mockResponses:
 helloWorld:
 requestCriterions:
 - message.method == 'GET'
 - message.path == '/helloWorld'
 backendRequests:
 tokenCheck:
 url: "https://google.com/!{$.path.myParam.value}"
the method is optional. GET is the default, POST if a body is present
 method: GET
 assignments:
 length: "$.header.Content-Length"
 response:
 statusCode: 200
 body: "{'responseLength':'${length}',
'testedPath':'?{$.path.myParam.value}'}"

To test, we sent:

$ curl "localhost:8080/helloWorld?myParam=dsfds"
{"responseLength": "1566","testedPath": "dsfds"}

The request is sent, the path is taken from the myParam query-parameter of the initial request.
Afterwards, the value of the Content-Length-Header is stored in the variable named length in the

123

TigerGlobalConfiguration.
We then sent a response with status-code 200 and json-body.
Here we first reference the measured length variable from the backend-request and next we return
the testedPath, taking the parameter from the initial request.

8.5. Nested response
To reduce the overhead when simulating conditional responses you can use the nestedResponses
mechanism.
This allows subdividing responses.
Consider the following example, where we check the password of the calling party (which is given
in cleartext in the request header).

Listing 31. tiger.yaml

servers:
 zionServer:
 type: zion
 zionConfiguration:
 serverPort: 8080
 mockResponses:
 passwordCheckResponse:
 requestCriterions:
 - message.method == 'GET'
 - message.path == '/helloWorld'
 nestedResponses:
 correctPassword:
 importance: 10
 requestCriterions:
 - "'?{$.header.password}' == 'geheim'"
 response:
 statusCode: 200
 body: '{"Hello":"World"}'
 wrongPassword:
 importance: 0
 response:
 statusCode: 405
 body: '{"Wrong":"The password !{$.header.password} is not correct"}'

The two answers are both considered.
Since they are stored in the YAML as a map, the order in the YAML is of no significance.
Rather you have to specify the importance of a response, with a higher number meaning a higher
importance meaning the response will be considered first.

8.6. Matching path variables
In many REST-Apis it is usual to include variables as part of the resource path.
Zion allows to configure a response that will match a path and extract the given variables.

124

The assigned values can then be used in the response or be used in additional matching criteria.
Here is an example:

Listing 32. tiger.yaml

servers:
 zionServer:
 type: zion
 zionConfiguration:
 serverPort: 8080
 mockResponses:
 users:
 request:
 path: "/users/{userId}"
 method: "GET"
 additionalCriterions:
 - "'${userId}' == '123'"
 response:
 statusCode: 200
 body: "{'id':'${userId}', 'username': 'Tiger'}"

The matching of the response is made with the new configuration entry request.Here we defined
the path and method that should match and additionalCriterions.In the path we can see a variable
defined with {userId}.

When making the following request:

$ curl "localhost:8080/users/123"
{'id':'123', 'username': 'Tiger'}

the variable userId will be matched with the requested url and be assigned the value of "123".
This value can then be used in the additionalCriterions and in the body.

The matching of paths using the request configuration can also be made using nested responses.
The path to match will combine paths specified in the different levels of the nested response.
For example:

Listing 33. tiger.yaml

servers:
 zionServer:
 type: zion
 zionConfiguration:
 serverPort: 8080
 mockResponses:
 users:
 request:
 path: "/users"
 nestedResponses:

125

 getSpecificUser:
 request:
 path: "/{userId}"
 method: "GET"
 additionalCriterions:
 - "'${userId}' == '123'"
 response:
 statusCode: 200
 body: "{'id':'${userId}', 'username': 'Tiger'}"
 addUser:
 request:
 method: "POST"
 path: ""
 response:
 statusCode: 201
 headers:
 Location: "/users/456"

Here we have two nested responses in the /users path.
One will match GET requests to the path /users/{userId} and the other will match POST-Requests to
the path /users.

8.7. tgrEncodeAs
One of the core capabilities of Zion is the ability to switch between media types.
You can return XML, JSON, JWT and many more types.
You can also embed one into the other.

As an example we want to return a JSON containing a freshly signed JWT (JSON Web Token).
For this we use the following response body file:

Listing 34. complicatedResponse.json

{
 "myToken": {
 "tgrEncodeAs": "JWT",
 "header": {
 "alg": "BP256R1",
 "typ": "JWT"
 },
 "body": {
 "name": "Max Power",
 "iat": {
 "tgrAttributes": ["jsonNonStringPrimitive"],
 "value": "!{currentTimestamp()}"
 }
 },
 "signature": {
 "verifiedUsing": "idpEnc"
 }

126

 }
}

will lead to

{
 "myToken":
"eyJhbGciOiJCUDI1NlIxIiwidHlwIjoiSldUIn0.eyJuYW1lIjogIk1heCBQb3dlciIsImlhdCI6IDE2ODg2M
zQ5MjR9.aOnFMxSkzvo9fJjnDSFCeX0G5-IP3XFQPZCRyZFBOEyBAgV2Dy3ImEjz_DpFRqSqtkHdkCcV-
T_e6aBejN_A2g"
}

We see the keyword tgrEncodeAs being used here.
Currently the following values are supported: XML, JSON, JWT, JWE, URL, BEARER_TOKEN.
A JWT consists of three parts: header, body, signature.
The given nodes are searched and taken.
The description of the JWT also could have been done in XML.

We then see another mode-switch being done in the iat-claim in the body of the JWT: iat is the
Unix-Timestamp at which the token was issued.
For our faked ad-hoc token we of course want to use the current time for this claim.
Unfortunately the iat claim is a number, which precludes the direct use of a JEXL-expression.
To solve this problem make the claim complex, add the "jsonNonStringPrimitive" attribute to the
resulting node and set the value to the desired value.
This also works for floating-point and boolean values.

8.8. RbelWriter content structures
In this paragraph we’ll take a look at the various structures that can be serialized with the
RbelWriter, which sits at the core of the Zion-Server.
The following examples are kept in JSON (apart from the Bearer token example).
Please note that the same result can be achieved from XML (or any other format for that matter).

8.8.1. JWT

{
 "tgrEncodeAs": "JWT",
 "header": {
 "alg": "BP256R1",
 "typ": "JWT"
 },
 "body": {
 "claim": "value"
 },
 "signature": {
 "verifiedUsing": "idpEnc"
 }

127

}

The three parts denote the different part of a JWT: The header claims (header), body claims (body)
and signature properties (signature).
RbelWriter will automatically try to sign the given JWT.
For this the key at $.signature.verifiedUsing is consulted and a matching key is searched in the
tiger key-database.
This will be filled at start-time by digging through the root-directory of the application recursively
and trying to open all found key-files with various default passwords.

Please note that the header-claims have to match the given key, otherwise the signing operation
can’t be completed successfully.

8.8.2. JWE

{
 "tgrEncodeAs": "JWE",
 "header": {
 "alg": "ECDH-ES",
 "enc": "A256GCM"
 },
 "body": {
 "some_claim": "foobar",
 "other_claim": "code"
 },
 "encryptionInfo": {
 "decryptedUsingKeyWithId": "idpEnc"
 }
}

As with the JWT, for the JWE all relevant claims are to be found in the appropriate sections.
The signature has been replaced by the encryptionInfo-section.
Here you need to specify the key to be used for the encryption.
Here in this example we are using a public/private key-pair (with the same name as before).
Again the header claims have to match the key used.

Apart from a public/private key-pair you can also use direct keys to encrypt your JWE.
Here is an example:

{
 "tgrEncodeAs": "JWE",
 "header": {
 "alg": "dir",
 "enc": "A256GCM"
 },
 "body": {
 "some_claim": "foobar",
 "other_claim": "code"

128

 },
 "encryptionInfo": {
 "decryptedUsingKey": "YVI2Ym5wNDVNb0ZRTWFmU1Y1ZTZkRTg1bG9za2tscjg"
 }
}

As we are using a AES 256 bit key the supplied key has to exactly carry 256 bits, Base64 encoded.

8.8.3. URL

To generate a URL you can also use the RbelWriter.
Consult the following structure:

{
 "tgrEncodeAs": "url",
 "basicPath": "http://blub/fdsa",
 "parameters": {
 "foo": "bar"
 }
}

The parameters will be added as query-parameters.
This can be rather useful to construct more complex parameters, for example a dynamically
generated JWT.

8.8.4. Bearer Token

A Bearer token can also be serialized directly via RbelWriter.
This is very relevant if you want to, for example, generate a JWT on the fly and use it as the Bearer
token.
The straight-forward way would be to directly write the Bearer token like so:

Bearer {
 "tgrEncodeAs":"JWT",
 "header":{
 "alg": "BP256R1",
 "typ": "JWT"
 },
 "body":{
 "claim": "value",
 },
 "signature":{
 "verifiedUsing":"idpEnc"
 }
}

Here the whole arrangement will be parsed as a Bearer token (Which is essentially the Word

129

Bearer, followed by a space and any string).
The value of the Bearer token will be parsed as a JSON.
When the result is then serialized, the tgrEncodeAs is interpreted and the JSON will be written as a
Base64-encoded JWT.

The following example will produce the same result.
However the overall structure is a JSON, which will be written as a Bearer token ("tgrEncodeAs":
"BEARER_TOKEN").
The content of the token is taken from the child-node with the name BearerToken.

{
 "tgrEncodeAs": "BEARER_TOKEN",
 "BearerToken": {
 "tgrEncodeAs": "JWT",
 "header": {
 "alg": "BP256R1",
 "typ": "JWT"
 },
 "body": {
 "claim": "value"
 },
 "signature": {
 "verifiedUsing": "idpEnc"
 }
 }
}

130

Chapter 9. Tiger Extensions
Tiger has certain extensions that fulfil certain tasks.
The different extensions are shortly described in the following sections.

9.1. Tiger Konnektor Management Extension
The Tiger-Konnektor-Management-Extension provides an interface to the KMS system of different
connector providers.
It also provides cucumber feature steps to access the different connectors.
This is an internal gematik extension and can be found on GitLab
https://gitlab.prod.ccs.gematik.solutions/git/Testtools/tiger/tiger-konnektor-management-extensions.

9.2. Tiger On FHIR Extension
The Tiger-On-Fhir-extension provides a set of simple BDD steps which can be used to check for
valid FHIR content therein.
FHIR stands for Fast Healthcare Interoperability Resources.
The tiger-on-fhir can be found on GitHub https://github.com/gematik/tiger-on-fhir and it uses the
Gematik Referenzvalidator located on GitHub https://github.com/gematik/app-referencevalidator.

9.3. Tiger CATS Extension
CATS stands for Card Terminal Simulator.
Tiger-Cats-Extensions offers the option to use the REST interface of CATS as Java functionality or as
BDD steps.
This is an internal gematik extension and can be found on GitLab
https://gitlab.prod.ccs.gematik.solutions/git/Testtools/tiger/tiger-cats-extensions.

9.4. Tiger Cloud Extension
The Tiger-Cloud-Extension allows to embed docker image based containers, docker compose scripts
and even helm charts to local or remote kubernetes clusters.
The GitHub repo is https://github.com/gematik/tiger-cloud-extension.

9.5. Tiger PSSIM Extension
The Tiger-PSSIM-Extension is an extension for simulating a Primärsystem (PS) in your tests.
It provides a wide range of BDD Steps and covers the majority of PS functionalities.
This is an internal gematik extension and can be found on GitLab
https://gitlab.prod.ccs.gematik.solutions/git/Testtools/tiger/tiger-pssim-extension.

9.6. Tiger Robot Extension
The Tiger-Robot-Extension is an extension designed to control the Cardterminal Robot created by

131

https://gitlab.prod.ccs.gematik.solutions/git/Testtools/tiger/tiger-konnektor-management-extensions
https://github.com/gematik/tiger-on-fhir
https://github.com/gematik/app-referencevalidator
https://gitlab.prod.ccs.gematik.solutions/git/Testtools/tiger/tiger-cats-extensions
https://github.com/gematik/tiger-cloud-extension
https://gitlab.prod.ccs.gematik.solutions/git/Testtools/tiger/tiger-pssim-extension

the gematik.
This is an internal gematik extension and can be found on GitLab
https://gitlab.prod.ccs.gematik.solutions/git/Testtools/tiger/tiger-robot-extension.

132

https://gitlab.prod.ccs.gematik.solutions/git/Testtools/tiger/tiger-robot-extension

Chapter 10. Rest API
The tiger test environment provides a Rest API which allows the automation of test execution and
retrieval of the corresponding test results.

The Rest API is disabled by default.
You can enable it by setting the following configuration entry in the tiger.yaml

lib:
 enableTestManagementRestApi: true # set to true to enable the Rest API. default is
false

To enable the Rest API it is required to have the cucumber-junit-platform-engine in the class path.

E.g.:

<dependency>
 <groupId>io.cucumber</groupId>
 <artifactId>cucumber-junit-platform-engine</artifactId>
 <version>7.19.0</version>
 <scope>test</scope>
</dependency>

This is transitively included if you are importing the tiger-test-lib.
But it is not included if you just import the tiger-testenv-mgr.

The following section provides an overview of the available endpoints and their functionality.
Additionally, the OpenApi specification yaml can be found in the tiger repository.

10.1. Tests

getAvailableTests

GET /tests

get list of available tests

Description

gets the list of available tests that were discovered by the JUnit Platform.

Parameters

Return Type

array[TestDescription]

133

https://github.com/gematik/app-Tiger/blob/master/tiger-testenv-mgr/src/main/resources/tiger-management-api.yaml

Content Type

• application/json

Responses

Table 1. HTTP Response Codes

Code Message Datatype

200 List of available tests List[TestDescri
ption]

400 Bad Request Error

500 Something went wrong server internally Error

0 The default error response Error

getTestResults

GET /tests/runs/{testRunId}

get the results of a test run

Description

gets the results of a test run. This includes a global test result and the results for each test case. In
case of failing tests, the failure message is also included.

Parameters

Path Parameters

Name Description Required Default Pattern

testRunId testRunId for which to get the test
results

X null

Return Type

TestExecutionResult

Content Type

• application/json

Responses

Table 2. HTTP Response Codes

Code Message Datatype

200 the test results for the given testRunId TestExecutionR
esult

404 The specified resource was not found Error

134

Code Message Datatype

400 Bad Request Error

500 Something went wrong server internally Error

0 The default error response Error

postExecutionRequest

POST /tests/runs

request the execution of a selection of tests

Description

sends a request for the execution of a selection of tests. The tests to be executed are specified with a
TestExecutionRequest which includes uniqueIds, tags and file paths. The execution request is
queued for execution and will be executed as soon as any previously running tests finish. The
response includes the id of the test run and the url where to find the results of the execution.

Parameters

Body Parameter

Name Description Required Default Pattern

TestExecutionRequest test execution request
TestExecutionRequest

X

Return Type

TestExecutionInformation

Content Type

• application/json

Responses

Table 3. HTTP Response Codes

Code Message Datatype

202 Request was received and test run is started TestExecutionI
nformation

404 The specified resource was not found Error

400 Bad Request Error

500 Something went wrong server internally Error

0 The default error response Error

135

postExecutionRequestAllTests

POST /tests/runs/all

request execution of all tests

Description

sends a request for the execution of all tests. The execution request is queued for execution and will
be executed as soon as any previously running tests finish. The response includes the id of the test
run and the url where to find the results of the execution.

Parameters

Return Type

TestExecutionInformation

Content Type

• application/json

Responses

Table 4. HTTP Response Codes

Code Message Datatype

202 Request was received and test run is started TestExecutionI
nformation

404 The specified resource was not found Error

400 Bad Request Error

500 Something went wrong server internally Error

0 The default error response Error

10.2. Models

10.2.1. Error

Default error object with information about the occurred error

Field Name Requir
ed

Nullabl
e

Type Description Format

errorCode X String A code identifying this error

errorMessage X String A readable message describing the
error

136

10.2.2. ExecutionResult

the result of an executed test

Field Name Requir
ed

Nullabl
e

Type Description Format

result X [String] Enum:
PENDI
NG,
RUNNI
NG,
SUCCES
SFUL,
ABORT
ED,
FAILED,

failureMessage String

10.2.3. TestDescription

The description of a test case

Field Name Requir
ed

Nullabl
e

Type Description Format

uniqueId String unique identifier of the tests which
is generated by the test platform.

sourceFile String source file from where the test was
discovered

displayName String display name of the test

tags Set of [string] tags associated with the test as
specified in the feature file

10.2.4. TestExecutionInformation

information of which tests were started and where to find the results of the test run

Field Name Requir
ed

Nullabl
e

Type Description Format

testRunId UUID uuid

resultUrl URI uri

testsToExecute List of
TestDescription

137

10.2.5. TestExecutionRequest

Request the execution of a subset of tests. Multiple specifications will be combined with AND. If one
of the tags, sourceFiles, or testUniqueIds is an empty list, it will not be considered in the selection of
tests. If all are empty, all tests are selected.

Field Name Requir
ed

Nullabl
e

Type Description Format

tags List of [string]

sourceFiles List of [string]

testUniqueIds List of [string] the unique ids generated by the
test platform. See the endpoint
`GET /tests` for the available tests.

10.2.6. TestExecutionResult

the result of the executed tests

Field Name Requir
ed

Nullabl
e

Type Description Format

testRunStarted Date date-
time

testRunFinished Date date-
time

result ExecutionResult

tests List of
[TestExecutionR
esult_tests_inner
]

10.2.7. TestExecutionResultTestsInner

Field Name Requir
ed

Nullabl
e

Type Description Format

test TestDescription

result ExecutionResult

138

Chapter 11. Links to test relevant topics
• 3-Amigos

◦ presumably first mentioned in George Dinwiddie’s blog (2009)

◦ John Ferguson’s Blog about 3 Amigos

• Cucumber

◦ Product website

◦ Guru99’s Intro to Gherkin

◦ Cucumbers Gherkin reference

• Serenity BDD

• SOLID

◦ Explaining all five concepts with simple Geometry

◦ In depth discussion of the 5 principles

• Separation of concerns principle

• Screenplay Pattern

◦ Nice overview of what the screenplay pattern is about

◦ From Page Objects to SOLID Screenplay

• FIRST principle for Unit tests

◦ AgileOtters Blog

139

https://blog.gdinwiddie.com/2009/06/17/if-you-dont-automate-acceptance-tests/
https://johnfergusonsmart.com/three-amigos-requirements-discovery/
https://cucumber.io/
https://www.guru99.com/gherkin-test-cucumber.html
https://cucumber.io/docs/gherkin/reference/
https://serenity-bdd.info/
https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://stackify.com/solid-design-principles/
https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
https://www.infoq.com/articles/Beyond-Page-Objects-Test-Automation-Serenity-Screenplay/
https://dzone.com/articles/page-objects-refactored-solid-steps-to-the-screenp
http://agileinaflash.blogspot.com/2009/02/first.html

Chapter 12. Frequently asked questions

12.1. Maven

12.1.1. FM01 Which Serenity are we currently using?

You can find the Serenity compatible with each Tiger version in the
[ReleaseNotes](ReleaseNotes.md)

12.1.2. FM02 When using maven, no tests are executed.

Please first make sure that either the surefire or failsafe plugin is enabled and shown as running in
the console.
If you use Junit4 test annotations, you have to make sure that the junit vintage engine from the
Junit5 library is included in the dependencies.

<dependency>
 <groupId>org.junit.vintage</groupId>
 <artifactId>junit-vintage-engine</artifactId>
 <version>${version.junit5}</version>
</dependency>

12.1.3. FM03 When running tests in Tiger, the test run aborts with a
java.lang.NoSuchMethodError.

More specifically, the error is as follows:

Exception in thread 'main' java.lang.NoSuchMethodError: 'java.util.Set
org.json.JSONObject.keySet()'

This is due to a dependency conflict which may be solved by an exclusion in the tiger-test-lib:

<exclusion>
 <groupId>com.vaadin.external.google</groupId>
 <artifactId>android-json</artifactId>
</exclusion>

12.1.4. FM04 I don’t see any log output, there are only warnings about
outdated versions at the beginning

Apparently you included SLF4J V2 dependencies.
We currently use the logback classic 1.2.x branch, which is delivered in the most recent SpringBoot
version.
This is not compatible to SLF4J 2.x.x.

140

12.1.5. FM05 There are selenium version conflicts when I want to run my
project with SpringBoot and tiger with selenium

SpringBoot deploys an outdated selenium version.
To solve the conflicts, please use the versions stated in the release notes via dependency managent
in the maven pom.xml.

12.2. Extensions

12.2.1. FE01 When I start a docker image in tiger.yaml, the
TestenvironmentManager’s startup fails

Please make sure that you added the tiger-cloud-extension dependency in the most recent version.

<dependency>
 <groupId>de.gematik</groupId>
 <artifactId>tiger-cloud-extension</artifactId>
 <version>x.y.z</version>
</dependency>

12.2.2. FE02 When using the tiger-cloud-extensions, healthcheck at docker
servertypes in Gematik SW factory fails

Tiger expects that Docker Daemon starts the container locally.
However, if this is not the case, you may use the environment variable TIGER_DOCKER_HOST to
share on which server instance the container is started and the HealthcheckURL is adjusted
accordingly.
For purposes of the Gematik SW-factory, the following code snippet is recommended for the
pipeline script:

stage('Test') {
 environment {
 TIGER_DOCKER_HOST = dockerGetCurrentHostname()
 }
 steps {
 mavenVerify(POM_PATH)
 }
}

12.3. Workflow UI

12.3.1. FW01 In the workflow UI scenarios are listed twice and are refreshed
the same time (as if they ran parallely)

Usually, this only happens when the test suite is started in intellij and TigerCucumberListener is

141

delivered as a plugin in TigerCucumberListener.
This is no longer necessary since v1.3 because the listener is added automatically.
Due to this manual adjustment, two listeners are running that communicate the scenarios twice to
the workflow UI.
If this happens in a mvn call, please check the tiger-maven-plugin configuration or the generated
driver classes in terms of additional plugins in CucumberOptions.

12.3.2. FW02 After having pressed shutdown in the workflow UI, I cannot
see messages in RbelLog Details Pane anymore

By stopping the test runs, the workflow UI backend is terminated as well.
You may recognize this by the light-red color of the side bar.
However, navigating in the RbelLog Details Pane requires a running backend.
In addition, RbelPath- and JEXL inspect dialogues are not working.

12.4. Other topics

12.4.1. FO01 How can I change the logging levels of loggers used by Tiger

Inside the tiger.yaml file, you can add a section logging.level: and add a list of packages / classes and
the desired logging level.

logging:
 level:
 de.gematik.test.tiger.testenvmgr.TigerTestEnvMgr: TRACE
 de.gematik.test.tiger.lib.TigerDirector: TRACE
 de.gematik.test.tiger.proxy: TRACE
 localTigerProxy: TRACE

12.4.2. FO02 Docker container creation fails

Use the command below to remove all unused containers.
Or look for containers starting with "tiger", stop and remove them.

docker system prune

Last resort:

netcfg -d

and restart docker

142

12.4.3. FO03 Adding alternative names programatically throws
SSLException

When using directly the method de.gematik.test.tiger.proxy.TigerProxy.addAlternativeName() to
add multiple alternative names to the TLS certificate of the tiger proxy the following exception may
come up:

12:17:48.604 [MockServer-EventLog13] ERROR o.mockserver.log.MockServerEventLog - 58165
exception creating SSL context for serverfailed to set certificate and key
javax.net.ssl.SSLException: failed to set certificate and key

The tiger proxy uses a mockserver internally which creates a SSLContext when handling the first
request.
Adding additional names after the first request will not update the created SSLContext and the
exception will be thrown.

A workaround for this behaviour is to explicitly restart the internal mockserver after adding an
alternative name.
E.g.:

TigerProxy proxy = TigerDirector.getTigerTestEnvMgr().getLocalTigerProxyOrFail();
proxy.addAlternativeName(host);
proxy.restartMockserver();

12.4.4. FM01 What serenity do we use currently?

Das zu jeder Tiger Version kompatible Serenity findet ihr in den [ReleaseNotes](ReleaseNotes.md)

12.4.5. FM02 Bei der Nutzung von maven werden keine Tests ausgeführt

Bitte stell zuerst sicher, dass entweder das surefire oder das failsafe plugin aktiviert ist und auch in
der Konsole als ausgeführt angezeigt wird.
Solltest Du Junit4 Test Annotationen verwenden so musst Du noch sicherstellen, dass die junit
vintage engine aus der Junit5 Library in den dependencies mit angeführt ist.

<dependency>
 <groupId>org.junit.vintage</groupId>
 <artifactId>junit-vintage-engine</artifactId>
 <version>${version.junit5}</version>
</dependency>

12.4.6. FM03 Beim Ausführen von Tests im Tiger bricht der Testlauf mit
einem java.lang.NoSuchMethodError ab

Genauer geht es um folgenden Fehler:

143

Exception in thread 'main' java.lang.NoSuchMethodError: 'java.util.Set
org.json.JSONObject.keySet()'

Der Grund hierfür ist ein Dependency Konflikt und kann durch eine Exklusion in der tiger-test-lib
dependency aufgelöst werden:

<exclusion>
 <groupId>com.vaadin.external.google</groupId>
 <artifactId>android-json</artifactId>
</exclusion>

12.4.7. FM04 Ich sehe keine Log-Ausgabe, lediglich am Anfang stehen
Warnungen über veraltete Versionen

Du hast anscheinend Dependencies zu SLF4J V2 eingebunden.
Wir verwenden derzeit den logback classic 1.2.x branch, da dieser in der von uns verwendeten
Spring Boot Version mitgeliefert wird.
Dieses ist NICHT kompatibel zu SLF4J 2.x.x!

12.4.8. FM05 Wenn ich in meinem Projekt Spring Boot und Tiger mit
Selenium nutzen will, gibt es Versionskonflikte bei Selenium

Spring Boot liefert eine veraltete Version von Selenium aus.
Um die Konflikte zu lösen, bitte die in den ReleaseNotes angeführten Versionen über
DependencyManagement im maven pom.xml lösen.

12.4.9. FM06 Wenn ich Scenario Outlines nutze, werden die Tests im junit
Report nicht mit dem Namen des Scenarios angezeigt, sondern z.B. als
Examples.Example #1.1.

Vermutlich ist die System Property cucumber.junit-platform.naming-strategy.short.example-name
(meist im File junit-platform.properties) auf etwas anderes als "pickle" gesetzt.
Wenn diese Property nicht explizit gesetzt wurde, wird sie von Tiger automatisch auf "pickle"
gesetzt.

12.5. Extensions

12.5.1. FE01 Wenn ich in der tiger.yaml ein Docker image starten will, so
schlägt der Startup des TestenvironmentManagers fehl.

Stelle sicher, dass du die tiger-cloud-extension in der aktuellsten Version als dependency
hinzugefügt hast.

<dependency>
 <groupId>de.gematik</groupId>

144

 <artifactId>tiger-cloud-extension</artifactId>
 <version>x.y.z</version>
</dependency>

12.5.2. FE02 Wenn ich die tiger-cloud-extensions nutze, schlägt der
Healthcheck bei docker Servertypen in der Gematik SW Factory fehl

Normalerweise geht Tiger davon aus, dass der Docker Daemon die Container am lokalen Rechner
startet.
Sollte dies nicht so sein, so kann man Tiger mit der Umgebungsvariable TIGER_DOCKER_HOST
mitteilen, auf welchem Rechner die Container gestartet werden und die HealthcheckURL wird
dementsprechend angepasst.
Für die Gematik SW-Factory empfiehlt sich folgendes Code Snippet für das Pipeline-Skript:

stage('Test') {
 environment {
 TIGER_DOCKER_HOST = dockerGetCurrentHostname()
 }
 steps {
 mavenVerify(POM_PATH)
 }
}

12.6. Workflow UI

12.6.1. FW01 In der Workflow UI sind die Szenarios doppelt aufgeführt und
werden auch zeitgleich aktualisiert (es scheint, als ob sie parallel ablaufen)

Passiert eigentlich nur, wenn die Testsuite aus Intellij gestartet wurde und in der
RuntimeConfiguration der TigerCucumberListener als plugin mitgegeben wird.
Dies ist seit v1.3 nicht mehr notwendig, weil der Listener automatisch hinzugefügt wird.
Durch den manuellen Eintrag laufen also dann zwei Listener, welche die Szenarien dann auch
doppelt an die Workflow UI kommunizieren …
Sollte dieser Effekt auch bei einem mvn call auftreten, dann bitte die Konfiguration des tiger-
maven-plugins überprüfen, bzw. die generierten Treiberklassen bezüglich zusätzlicher Plugins in
den CucumberOptions checken.

12.6.2. FW02 Nachdem ich auf Shutdown in der Workflow UI gedrückt habe,
kann ich die Nachrichten in der RbelLog Details Pane nicht mehr ansehen

Durch das Beenden des Testlaufs ist das Backend der Workflow UI auch beendet worden.
Dies kannst Du auch daran erkennen, dass die linke Seitenleiste nun blass rot eingefärbt ist.
Das Navigieren in der RbelLog Details Pane benötigt aber das Backend und klappt daher zum
jetzigen Zeitpunkt nicht mehr.
Auch die RbelPath- und JEXL Inspect Dialoge sind nicht mehr funktional.

145

12.7. Other topics

12.7.1. FO01 How can I change the logging levels of loggers used by Tiger

Inside the tiger.yaml file you can add a section logging.level: and add a list of packages / classes and
the desired logging level.

logging:
 level:
 de.gematik.test.tiger.testenvmgr.TigerTestEnvMgr: TRACE
 de.gematik.test.tiger.lib.TigerDirector: TRACE
 de.gematik.test.tiger.proxy: TRACE
 localTigerProxy: TRACE

12.7.2. FO02 Docker container creation fails

Use the command below to remove all unused containers.
Or look for containers starting with "tiger", stop and remove them.

docker system prune

Last resort:

netcfg -d

and restart docker

12.7.3. FO03 Adding alternative names programatically throws
SSLException

When using directly the method de.gematik.test.tiger.proxy.TigerProxy.addAlternativeName() to
add multiple alternative names to the TLS certificate of the tiger proxy the following exception may
come up:

12:17:48.604 [MockServer-EventLog13] ERROR o.mockserver.log.MockServerEventLog - 58165
exception creating SSL context for serverfailed to set certificate and key
javax.net.ssl.SSLException: failed to set certificate and key

The tiger proxy uses a mockserver internally which creates a SSLContext when handling the first
request.
Adding additional names after the first request will not update the created SSLContext and the
exception will be thrown.

A workaround for this behaviour is to explicitly restart the internal mockserver after adding an

146

alternative name.
E.g.:

TigerProxy proxy = TigerDirector.getTigerTestEnvMgr().getLocalTigerProxyOrFail();
proxy.addAlternativeName(host);
proxy.restartMockserver();

147

	Tiger User Manual
	Contents
	Chapter 1. Overview
	1.1. Use cases
	1.2. Components

	Chapter 2. Getting started
	2.1. Requirements
	2.2. Maven in a nutshell
	2.3. Maven plugin details
	2.4. Example project
	2.5. How to contact the Tiger team
	2.6. IntelliJ

	Chapter 3. Tiger test environment manager
	3.1. Tiger.yaml files and how they are chosen and loaded
	3.2. Supported server nodes and their configuration
	3.3. Provided node templates
	3.4. Configuring the local test suite Tiger Proxy
	3.5. Standalone mode vs. implicit startup with test suite
	3.6. Using Environment variables and system properties

	Chapter 4. Tiger Proxy
	4.1. Excurse: What are proxies, reverse, forward
	4.2. Tiger Proxy basics
	4.3. Understanding routes
	4.4. TLS, keys, certificates a quick tour on proxies
	4.5. Modifications
	4.6. Mesh set up
	4.7. Adding notes to messages
	4.8. Understanding RBelPath
	4.9. Running Tiger Proxy as standalone JAR
	4.10. Additional configuration
	4.11. Understanding filtering

	Chapter 5. Tiger Test library
	5.1. Tiger test lib configuration
	5.2. Cucumber and Hooks
	5.3. Using the Cucumber Tiger validation steps
	5.4. Modifying RbelObjects (RbelBuilder)
	5.5. Using the HTTP client steps
	5.6. Exemplaric scenario Konnektorfarm EAU validation
	5.7. Using Tiger test lib helper classes
	5.8. Synchronizing BDD scenarios with Polarion test cases (Gematik only)
	5.9. JUnit test report when using Scenario Outlines

	Chapter 6. Tiger Configuration
	6.1. Inlets
	6.2. Key-translation
	6.3. Thread-based configuration
	6.4. Placeholders
	6.5. RbelPath-style retrieval
	6.6. Fallback values
	6.7. Localized configuration
	6.8. Examples
	6.9. Pre-Defined values
	6.10. Inline JEXL
	6.11. Configuration Editor

	Chapter 7. Tiger User interfaces
	7.1. Workflow UI
	7.2. Postpone start of test scenarios
	7.3. Standalone Tiger Proxy Log
	7.4. Explanation of JEXL Expressions

	Chapter 8. Tiger Zion
	8.1. Simple canned response
	8.2. Looping (tgrFor)
	8.3. Conditional rendering (tgrIf)
	8.4. Backend request
	8.5. Nested response
	8.6. Matching path variables
	8.7. tgrEncodeAs
	8.8. RbelWriter content structures

	Chapter 9. Tiger Extensions
	9.1. Tiger Konnektor Management Extension
	9.2. Tiger On FHIR Extension
	9.3. Tiger CATS Extension
	9.4. Tiger Cloud Extension
	9.5. Tiger PSSIM Extension
	9.6. Tiger Robot Extension

	Chapter 10. Rest API
	10.2. Models

	Chapter 11. Links to test relevant topics
	Chapter 12. Frequently asked questions
	12.1. Maven
	12.2. Extensions
	12.3. Workflow UI
	12.4. Other topics
	12.5. Extensions
	12.6. Workflow UI
	12.7. Other topics

